

EEG-Based Vigilance Analysis

Bachelor Candidate: Qian, Feng

ACM Honored Class Department of Comp. Sci. Shanghai Jiao Tong University

Jun 20, 2007

Methodology

Experiments

Engineering Project

Undergraduate Thesis Defense

- What are EEG signals
- What is vigilance
- The purpose of the research
- What methods are adopted

Undergraduate Thesis Defense

EEG is the abbreviation of Eletroencephalography (脑电图).

Undergraduate Thesis Defense

What is Vigilance

Vigilance (警觉度), or sustained attention, refers to the ability of observers to maintain their focus of attention and to remain alert to stimulus for prolonged periods of time.

High Vigilance

Low Vigilance

Undergraduate Thesis Defense

During our daily lives, for many human machine interaction systems, the operators should retain vigilant above a constant level to keep working safely. We need an effective method to measure the current vigilance level of the operator.

An EEG Based Assistant Driving System Developed by DaimlerChrysler Company

Undergraduate Thesis Defense

We adopt an intra-discipline methodology combining

- Signal Processing
- Statistical Learning
- Data Mining
- Visualization

Methodology

- Overview of the framework
- Step-by-step introduction

Undergraduate Thesis Defense

Overview of Our Analysis Framework

Undergraduate Thesis Defense

Signal Acquisition

Undergraduate Thesis Defense

Artifact Removal

Artifact (Noise) includes

- Electromyography (EMG) Signals (肌肉电信号)
- Electrooculography (EOG) Signals (眼球电信号)
- Electrocardiography (ECG) Signals (心电信号)
- 50Hz Alternating Current Interference

Undergraduate Thesis Defense

From awake to sleep, EEG energy around 13Hz (between α and β rhythm) will gradually decrease, meanwhile EEG energy around 4Hz (between δ and θ rhythm) will gradually increase.

Frequency Band of *Sleeping-Related* EEG is less than 20 Hz. According to *Nyquist Sampling Theory*, a Low-Pass Filter of 40Hz could be used.

Removal

Acquisition

Dim. Result

Clustering

Analysis

PCA

We use a 66-channel (66-electrode) sampling device. Each channel (electrode) is located at a unique position on the scalp. After *Spatial Filtering*:

Feature

Extraction

The number of channels is significantly reduced.

Spatial

Filtering

Femporal

Filtering

Information not related to the vigilance is filtered.

Undergraduate Thesis Defense

Signal Artifact
RemovalTemporal
FilteringSpatial
FilteringFeature
ExtractionPCAClustering
AnalysisVis. of High
Dim. Result

We use the *Common Spatial Pattern* (CSP) technique to achieve Spatial Filtering. In math, it simultaneously diagonalizes two covariance matrices.

CSP Analyzing Phase

Undergraduate Thesis Defense

Spatial Filtering

After Spatial Filtering:

- The number of channels is significantly reduced.
- Information not related to the vigilance is filtered.

Experiments show that the *Energy* has close relationship with vigilance. Then we base the feature extraction on *Energy*.

The energy distribution around 3Hz in three vigilant states of the scalp

Undergraduate Thesis Defense

Feature Extraction

Undergraduate Thesis Defense

PCA (Principle Component Analysis) is a statistical technique to reduce the dimension of feature vectors. It is based on *Eigenvectors* of the covariance matrix.

We use clustering algorithms to discover different vigilant states and their corresponding time automatically.

Visualization of High Dimension Clustering Result

Feature Vectors

Clustering Result of 3-Dim Feature Vectors

How to visualize clustering result of n-Dim Feature vectors (n>3) ???

Self Organization Maps (SOM) is adopted to visualize high-dimensional vectors on a 2D plane.

Visualize 3D Colors on a 2D Plane. Similar colors are automatically grouped together.

Undergraduate Thesis Defense

Review of Our Analysis Framework

Undergraduate Thesis Defense

Methodology

Experiments

- Environment
- Step-by-step introduction
- Results

Undergraduate Thesis Defense

Experimental Environment

NeuroScan System 3.0 @ BCMI

Undergraduate Thesis Defense

Signal Acquisition Artifact Temporal Filtering Spatial Filtering Feature Extraction PCA Clustering Analysis Vis. of High Dim. Result

Electrode Distribution Diagram

Damaged Electrodes

Omitted Electrodes

66-8=58 Channels are used

Undergraduate Thesis Defense

Signal Acquisition

- Subject: A 25-year old healthy man
- Total Signal Length: 1 hr 5 min 28 sec
- Channels (Electrodes): 58
- Sampling Rate: 1000Hz (Down Sampling to 100Hz)
- Sound Stimulation Time: 18:22, 26:54, 35:26, 52:18

Artifact Removal

Artifact Removal is done manually. 42 sects are discarded.

00:00-02:25	11:13-11:16	13:43-13:45	16:29-16:32	20:30-20:32	22:18-22:22
23:00-24:00	25:12-25:16	26:54-27:04	27:46-27:53	31:17-31:22	32:28-32:44
34:06-34:24	35:54-36:16	37:03-37:11	37:26-37:53	38:04-38:26	38:54-39:00
39:34-39:44	40:37-40:46	41:37-41:44	42:57-43:12	43:34-43:44	44:01-44:11
44:49-45:13	44:23-45:30	46:00-46:10	46:38-46:48	47:38-47:49	48:18-48:25
49:37-49:44	50:22-50:30	50:39-51:00	51:32-51:50	52:18-52:32	52:41-52:53
53:00-53:10	58:25-58:40	1:00:43-1:00:53	1:02:35-1:02:57	1:03:21-1:03:54	1:05:14-end

Temporal Filtering

We use a 40Hz low pass filter.

Undergraduate Thesis Defense

The subject's response to the sound stimulation

Time	Blinked	
18:22	Yes	
26:54	No	
35:26	No	
52:18	Yes	

Estimated clear-headed time: 00:00 to 15:00Estimated sleeping time:25:00 to 35:00CSP Training Set 1:141 trials between 00:00 and 15:00CSP Training Set 2:141 trails between 25:00 and 35:00Each Trial:400 points (4sec), no overlappingCSP Output:12*58 Projection Matrix

Feature Extraction and PCA					
Signal Artifact Temporal Spatial Fe Acquisition Removal Filtering Filtering Ext	eature traction PCA Clustering Vis. of High Analysis Dim. Result				
Window Size of STFT:	1024 Points				
Overlapping:	512 Points				
Num. of Valid Windows:	552				
Num. of Feature Vectors:	552				
Energy Levels:	64				
Num. of Channels:	12 (Processed by CSP)				
Dim. of Feature Vectors:	12*64=768				
Reduced Dim. of Feature Vectors:	2 to 30 (Processed By PCA)				

Clustering Algorithms:

- Standard K-Means Algorithm
- Bisecting K-Means Algorithm
- Density Based DBSCAN Algorithm
- Fuzzy Clustering Algorithm (FCM)

High-Dim Visualization Technique:

Self Organization Maps (SOM)

Undergraduate Thesis Defense

Standard K-Means, 8 Dims, 4 Clusters

Undergraduate Thesis Defense

Undergraduate Thesis Defense

Undergraduate Thesis Defense

Experiments

Engineering Project

- Overview
- Introduction of Components
- Optimizations

Undergraduate Thesis Defense

Engineering Project – Easy EEG

Project Name: Easy EEG Platform: 32/64 bit Windows Language: C++ Size: About 10,000 lines Components:

- Signal Controller
- Temporal Domain Viewer
- Frequency Domain Viewer
- Channel Selector
- Filter
- Power Distribution Viewer
- Signal Cutter
- Optimizations

Welcome	► Easy EEG EEG Signal Analyzing System Feng Qian @ BCMI, SJTU					
C Layout 1 (For 1024*768) C Layout 2 (For 1280*1024) C Layout 3 (For 1400*1050)						
Logo						

Main Toolbar

Engineering Project – EasyEEG

Integrated Environment

Undergraduate Thesis Defense

Signal Controller

Undergraduate Thesis Defense

Temporal Domain Viewer

××××

Ж

- 🗆 X EEG Signal Viewer 00:49:28 📤 00:49:23 00:49:18 00:49:13 00:49:08 00:49:03 00:48:58 169.4 North Why Why 91.4 25 -64.6 -142.5 Mymmy war W May Many my 222.7 129.7 MM 36.8 CPZ -56.2 -149.1

Undergraduate Thesis Defense

Channel Selector

Ë

....

Ж

61

Undergraduate Thesis Defense

Frequency Domain Viewer

Undergraduate Thesis Defense

Filter

....

7

××××

Undergraduate Thesis Defense

Ň

Ë

EEG-Based Vigilance Analysis

61

Ж

Power Distribution Viewer

Undergraduate Thesis Defense

Signal Cutter

Undergraduate Thesis Defense

EEG-Based Vigilance Analysis

61

Optimizations:

Ë

Reading EEG Data in Various Sampling Rate Enable the system to respond the user in real-time.

....

 $\overline{\nabla}$

Ж

Multi-core Optimization

ΛĴ

×××

Undergraduate Thesis Defense

Multithreading Opt. for Multi-Core Processors

Multi-Threading Optimization in Signal Filter for a Dual-Core Processor

Multithreading Opt. for Multi-Core Processors

Multi-Threading Optimization in Power Distribution Viewer for a Quad-Core Processor

Undergraduate Thesis Defense

We tested the multithreading program on a Intel T7200 Dual Core 2 Laptop Computer with 1.50GB of RAM. After the optimization (using two threads), it runs approximately 1.5 times faster.

Summary of my work:

- Successfully use a synthesized framework to do vigilance analysis based on EEG Signals.
- Independently established an integrated EEG analyzing system.

- I would like to express my gratitude to professors at BCMI (*Prof. Lu, Baoliang* and *Prof. Zhang, Liqing*), my advisor (Prof. *Luo, Yuan*) my technical instructor (Ph.D. candidate *Mr. Shi, Lichen*), my classmates (*Mr. Sun, Han* and *Mr. Liang, Weiming*) and all my friends at *SJTU*.
- This project is sponsored by National Natural Science Foundation #60473040.