
Demo: DEMS: DEcoupled Multipath Scheduler
for Accelerating Multipath Transport

Yihua Ethan Guo, Ashkan Nikravesh, Z. Morley Mao, Feng Qian†, Subhabrata Sen‡

University of Michigan †Indiana University ‡AT&T Labs – Research
{yhguo, ashnik, zmao}@umich.edu fengqian@indiana.edu sen@research.att.com

ABSTRACT
We present the demonstration of DEMS, a new multipath scheduler
aiming at reducing the data chunk download time. DEMS consists
of three key design decisions: (1) being aware of the chunk bound-
ary and strategically decoupling the paths for chunk delivery, (2)
ensuring simultaneous subflow completion at the receiver side, and
(3) allowing a path to trade a small amount of redundant data for
performance. We integrate the DEMS components into a holistic
system and implement it on commodity mobile devices, where un-
modified mobile applications can use DEMS to transmit data over
multipath.We demonstrate the simple configuration of usingDEMS
over multipath, visualization of multipath scheduling, download
time reduction of data chunks with DEMS over both emulated and
real cellular/WiFi networks compared to default MinRTT scheduler,
and application QoE improvement on mobile phones from DEMS.

1 INTRODUCTION
Simultaneously using multiple network paths such as cellular and
WiFi to accelerate data transfer is an attractive feature on mobile
devices. It is supported by many commercial products such as Apple
Siri [3], Gigapath by Korean Telecom [1], and Samsung Download
Booster [2]. Currently the most widely used multipath solution
is MPTCP [4], which enables unmodified applications to leverage
multipath by adding a shim layer to the TCP interface. MPTCP
establishes a subflow over each network path. The MPTCP sender
distributes the data onto the subflows; the receiver reassembles
the data into the original byte stream and delivers it to the app
transparently.

Multipath scheduler is an important component in multipath
transport, which determines how the data is distributed onto the
subflows. MPTCP supports different types of schedulers. For exam-
ple, the MinRTT scheduler attempts to deliver the data as soon as
possible by choosing a subflow with the smallest RTT unless its
congestion window is full. Despite existing efforts on improving
multipath scheduler [5, 7–11], we found that the multipath sche-
duler design is far from being optimal. In a pilot experiment, we
observe that surprisingly, under representative WiFi/LTE network
conditions, the MinRTT scheduler inflates the download time for a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiCom ’17, October 16–20, 2017, Snowbird, UT, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4916-1/17/10.
https://doi.org/10.1145/3117811.3119869

Data Chunk

Subflow 1 Subflow 2

Data Chunk

T1

Data Chunk

Chunk-based
Decoupled Data Transfer

Simultaneous
Subflow Completion

Handle Variable Network 
Conditions through 
Reinjection

T2=

Figure 1: Key design decisions of DEMS.

medium-sized file by up to 33% compared to the optimal scheduling
decision derived offline. In real-world networks with fluctuating
bandwidth or latency, MinRTT may perform even worse (up to 7.5x
download time increase, 49% median increase compared to optimal
scheduling). Regarding the root cause, our key insight is that for
such a file download, oftentimes the subflows do not complete at the
same time at the receiver side, leading to suboptimal performance.

This demonstration shows DEMS (DEcoupledMultipath Sche-
duler1) [6], a new multipath packet scheduler aiming at reducing
the data chunk download time over multiple paths. A data chunk is
simply a block of application-defined bytes, which is a very com-
mon data transfer workload in mobile applications, e.g., fetching
an image, JavaScript, MP3 file, or video chunk. The key idea behind
DEMS is to achieve simultaneous subflow completion at the receiver
side through strategic packet scheduling over decoupled subflows in
order to minimize the chunk download time. To accomplish this,
DEMS incorporates three design components: (1) chunk-based data
transfer, (2) simultaneous subflow completion, and (3) dynamic
reinjection. We demonstrate that DEMS is easy to use for unmod-
ified applications, beneficial to both chunk downloads and real
applications including web browsing.

2 DESIGN OVERVIEW
As shown in Figure 1, the key design decisions of DEMS include
the following: (1) DEMS leverages a heuristic that treats all data in
the meta buffer as a chunk, and it strategically decouples the paths
for chunk delivery (§2.1). (2) DEMS ensures simultaneous subflow
completion at the receiver side (§2.2). (3) DEMS allows a path to
trade a small amount of redundant data for performance (§2.3).
We further elaborate on how DEMS is integrated into a mobile
multipath system (§2.4).

1Note here “decoupled scheduling” is different from the decoupled congestion control
in MPTCP.

https://doi.org/10.1145/3117811.3119869


2.1 Chunk-based Data Transfer
In DEMS, by default, data is delivered to the application on a per-
chunk basis. A (data) chunk consists of a block of bytes defined by
the application, which can be, for example, an image, a Javascript,
an audio snippet, or a video chunk. As long as a chunk can be
correctly reassembled at the transport layer, bytes within the chunk
can be delivered in any order. The data chunk is thus split into
different parts that are distributed onto different paths for deliv-
ery. For the common scenario involving two paths, we design a
“two-way” splitting approach: the two paths transfer the data in
opposite directions, one from the beginning and the other from the
end; when they “meet” each other, the chunk is fully downloaded.
This approach is intuitive and parameterless. Furthermore, it helps
improve the multipath performance by decoupling the two subflows.
Each subflow freely and independently transfers the data until the
very end when subflows meet and merge.

2.2 Simultaneous Subflow Completion
Having all subflows complete at the same time at the receiver side
is a necessary condition for achieving the optimal performance.
The reason can be easily shown through proof by contradiction:
suppose in an optimal scheme, Subflow A finishes earlier than
Subflow B; in that case Subflow B can further “offload” some bytes
to Subflow A, leading to an even shorter download time. To achieve
simultaneous subflow completion, the high-level idea is to introduce
a timing offset at the sender to compensate the heterogeneous delay
across both subflows. DEMS uses bandwidth and delay prediction
to calculate the timing offset and dynamically decides the network
path to transmit each packet.

2.3 Handling Variable Network Conditions
DEMS tolerates unbalanced completion of subflows under variable
network condition by performing reinjection: instead of having a
full stop when all bytes of a chunk are transmitted, a subflow may
further “overshoot” its portion by sending a small number of bytes
that are beyond the meeting point of the two subflows. These bytes
are redundant because they have already been transmitted over
the other subflow. The purpose of reinjection is to trade redundant
data for better performance: under uncertain network conditions,
if the reinjected (redundant) data arrives earlier than its original
copy, the overall download time is reduced. In DEMS, reinjection
only occurs near subflows’ meeting point. We develop a method
that adaptively determines the amount of the redundant data to
strike a sweet spot between the performance and the additional
data transmission due to reinjection.

2.4 System Design
We now elaborate on how to integrate the DEMS algorithm into
a real system. Figure 2 plots the system diagram. At the sender
side (right), the chunk data coming from the application is stored
in the meta buffer, and is then split, scheduled, and transmitted
by the packet scheduler. Working with the packet scheduler, the
reinjection manager keeps track of packets’ transmission states and
makes decisions on adaptive reinjection. We also design a module
for measuring and predicting network conditions (One-way de-
lay difference between two subflows, i.e. ∆OWD, and bandwidth).

OWD/BW 
Measuring

OWD/BW Measuring
and Prediction

Receiver
Meta 
Buffer

In-order
Delivery

Data
To

App
Sender
Meta 
Buffer

Subflow 1

Subflow 2

Packet
Scheduler

Data
From
App

Reinjection 
Manager

Optional hint 
API for setting

chunk size 
Left: receiver side
Right: sender side

Figure 2: System diagram of DEMS.

The application can also optionally specify the chunk size through
an API. The receiver side logic is much simpler. It passively re-
ceives/acknowledges the data, reassembles it in the receiver-side
meta buffer, and delivers the in-order data to the application. Note
that data over the (decoupled) subflows are acknowledged sepa-
rately using the per-subflow ACK numbers. Meanwhile, similar to
MPTCP, at the receiver meta buffer, the global sequence number
carried by each packet is used to mark which portion within the
chunk has been received. While Figure 2 illustrates one-way data
transfer, our system supports full-duplex data transmission.

3 DEMONSTRATION
The demonstration consists of two Android phones and two Linux
laptops. We use both the Android phones and Linux laptops to
demonstrate the capability of running DEMS scheduler over multi-
path. The phones require access to both the cellular network (3G or
4G/LTE) and WiFi network. Both laptops require access to a WiFi
network and power. One of the laptop serves as a multipath proxy
for mobile devices and visualizes the multipath scheduling of both
MinRTT andDEMS. We need one table to setup all equipments with
an estimated time of 1 hour. We use these devices to demonstrate
the following:
Simple configuration of usingDEMS.We show howDEMS can
be easily used by unmodified applications on commodity mobile
devices. We leverage a customized multipath TCP proxy infrastruc-
ture. Between the proxy and the mobile device, multipath is realized
as multiple conventional TCP connections each corresponding to
a subflow established over a network path. For download traffic,
the proxy makes the corresponding multipath scheduling decision
for each data packet. A policy file on the mobile device configures
the scheduler to be used for each application. We demonstrate that
by using this proxy infrastructure and easily modifying the config-
uration file, DEMS can be enabled over multipath for unmodified
mobile applications.
Visualization of multipath scheduling. This shows how differ-
ent schedulers including MinRTT and DEMS makes scheduling
decision for each packet over time, to better understand the design
of multipath schedulers. We show that oftentimes the subflows
in MinRTT do not complete at the same time at the receiver side,
achieving sub-optimal download time. Instead, DEMS minimizes
the data transfer time by achieving simultaneous subflow comple-
tion.
Improvement of data chunk download. This shows the perfor-
mance improvement of DEMS on downloading data chunks over



both emulated and real multipath environments ofWiFi and cellular
networks. We take a “record and replay” approach to realistically
emulate the varying bandwidth. We collect multiple 5-minute band-
width traces of both paths from different locations. In the demon-
stration, we compare the performance of DEMS and MinRTT under
the same network conditions, by replaying the bandwidth traces or
using real networks.
Application QoE benefits. This shows how DEMS helps improve
the QoE of web browsing, one of the most popular applications on
mobile devices. We use web page loading experiments using off-
the-shelf Chrome browser (version 53.0.2785.124) on our Android
phones.We picked 10 popular websites and use their mobile-version
landing pages as the target web pages. We use the page load time
(PLT), which is programmatically measured by the Chrome de-
bugging interface, as the QoE metric. We demonstrate that PLT is
improved with DEMS over multipath compared to default MinRTT
scheduler.

REFERENCES
[1] 2015. In Korean, Multipath TCP is pronounced GIGA Path. http://blog.

multipath-tcp.org/blog/html/2015/07/24/korea.html. (2015).

[2] 2016. Samsung Download Booster. http://www.samsung.com/uk/support/skp/
faq/1061358. (2016).

[3] 2017. iOS: Multipath TCP Support in iOS 7. https://support.apple.com/en-us/
HT201373. (2017).

[4] Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaventure. 2013. TCP
Extensions for Multipath Operation with Multiple Addresses. RFC 6824. (2013).

[5] Alexander Frömmgen, Tobias Erbshauser, Alejandro P. Buchmann, Torsten Zim-
mermann, and Klaus Wehrle. 2016. ReMP TCP: Low Latency Multipath TCP. In
IEEE ICC 2016.

[6] Yihua Ethan Guo, Ashkan Nikravesh, Z. Morley Mao, Feng Qian, and Subhabrata
Sen. 2017. Accelerating Multipath Transport Through Balanced Subflow Comple-
tion. In ACM MobiCom 2017.

[7] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrishnan. 2016. MP-DASH:
Adaptive Video Streaming Over Preference-Aware Multipath. In ACM CoNEXT
2016.

[8] Nicolas Kuhn, Emmanuel Lochin, AhlemMifdaoui, Golam Sarwar, OlivierMehani,
and Roksana Boreli. 2014. DAPS: Intelligent Delay-aware Packet Scheduling for
Multipath Transport. In IEEE ICC 2014.

[9] Yeon-sup Lim, Erich M Nahum, Don Towsley, and Richard J Gibbens. 2017. ECF:
AnMPTCP Path Scheduler toManage Heterogeneous Paths. InACM SIGMETRICS
2017 Abstracts.

[10] Christoph Paasch, Simone Ferlin, Ozgu Alay, and Olivier Bonaventure. 2014. Ex-
perimental Evaluation of Multipath TCP Schedulers. In ACM SIGCOMM Capacity
Sharing Workshop (CSWS) 2014.

[11] Yeon sup Lim, Yung-Chih Chen, Erich M. Nahum, Don Towsley, Richard J.
Gibbens, and Emmanuel Cecchet. 2015. Design, Implementation and Evaluation
of Energy-Aware Multi-Path TCP. In ACM CoNEXT 2015.

http://blog.multipath-tcp.org/blog/html/2015/07/24/korea.html
http://blog.multipath-tcp.org/blog/html/2015/07/24/korea.html
http://www.samsung.com/uk/support/skp/faq/1061358
http://www.samsung.com/uk/support/skp/faq/1061358
https://support.apple.com/en-us/HT201373
https://support.apple.com/en-us/HT201373

	Abstract
	1 Introduction
	2 Design Overview
	2.1 Chunk-based Data Transfer
	2.2 Simultaneous Subflow Completion
	2.3 Handling Variable Network Conditions
	2.4 System Design

	3 Demonstration
	References

