
Push or Request: An Investigation of HTTP/2 Server Push
for Improving Mobile Performance

Sanae Rosen, Bo Han*, Shuai Hao*, Z. Morley Mao, Feng Qian†

University of Michigan, †Indiana University, *AT&T Labs – Research
{sanae,zmao}@umich.edu, fengqian@indiana.edu, {bohan,haos}@research.att.com

ABSTRACT
In HTTP/1.1, it is necessary for the client to request an object (e.g.
an image in a page) in order for the server to send it, even if the
server knows in advance what the client will need. Server Push is
a feature introduced in HTTP/2 that promises to improve page load
times (PLT) by having the server push content to the browser in
advance. In this paper, we investigate the benefits and challenges
of using Server Push on mobile devices. We first examine whether
pushing all content or just the CSS and Javascript files performs
better, and find the former leads to much better web performance.
Also, we find that sites making use of domain sharding or which
otherwise have content divided across many servers do not benefit
much from Server Push, a major challenge for Server Push going
forward. Network performance characteristics also play a major
role. Server Push is especially effective at improving performance
at high loss rates (16% median PLT reduction with a 2% loss rate)
and high latencies (14% PLT reduction with 100 ms latency), and
has little benefit for high-speed Ethernet connections. This mo-
tivates its use on mobile devices, although we also find the lim-
ited processing power of these devices limits the benefits of Server
Push. Server Push also offers modest energy benefits, with energy
savings of 9% on LTE for one device. Overall, Server Push is a
promising approach for improving web performance in mobile net-
works, but there are a number of challenges in achieving the full
benefits of Server Push.

1. INTRODUCTION
Recently, HTTP/2, which promises improvements over HTTP/1.1

in browsing performance due to new features such as Server Push,
has been standardized. In Server Push, the server uses its knowl-
edge of the website’s content to push objects before the client re-
quests them. In this paper, we explore whether, and to what degree,
Server Push leads to performance benefits, focusing on mobile net-
works where network conditions are dynamic and challenging.

Recent work has shown that improving web browsing perfor-
mance is a complex problem. For instance, the performance bene-
fits of SPDY have not been as great as expected [33], and are de-
pendent on factors such as network performance. As most sites

c©2017 International World Wide Web Conference Committee (IW3C2),
published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052574

.

do not use Server Push, we take snapshots of 50 popular websites
and test them locally on a server that supports Server Push. With
this dataset, we find that Server Push offers far higher performance
improvements on WiFi and LTE networks than Ethernet networks,
and in fact on a high-speed Ethernet network, Server Push is not
particularly useful. This motivates focusing on mobile devices.

To understand the impact of network characteristics, we per-
form experiments on mobile phones, as well as controlled exper-
iments with artificially limited network conditions on wired net-
works where it is easier to explore the impact of limited network
performance in a systematic way. We find that Server Push per-
formance improvements are highly dependent on network features
such as the loss rate and latency, and in some cases Server Push
can even be detrimental. Individual websites also vary greatly in
how they are impacted by the network, due to differences in load-
ing patterns and the impact of rendering and computation. In ab-
solute terms, savings are typically around a few hundred millisec-
onds, with some pages seeing benefits of seconds. In this paper, we
explore these factors in depth and provide recommendations as to
when Server Push would be most useful.

We examine how other factors can impact Server Push perfor-
mance as well. Pushing the entire website, rather than a few Javascript
or CSS files, is necessary to see substantial performance improve-
ments. Websites split among different domains are a challenge for
Server Push. We also find that the limited processing power of mo-
bile phones can limit the benefits of Server Push, and that more
computationally powerful devices would likely benefit more. Fi-
nally, we find that Server Push reduces energy consumption, of-
fering modest energy reductions of 9% on one LTE network on
average.

Our main contribution is that this is the first study focused on
understanding Server Push performance (particularly on mobile de-
vices) and how and when Server Push should be used. More specif-
ically, our main findings are as follows:

• Server Push shows greater relative performance improvements
on high-loss or high-latency networks, such as cellular and
WiFi networks, as compared to typical wired networks, mo-
tivating its use on mobile devices.

• Pushing all content on a website is on average significantly
more effective than pushing a handful of Javascript or CSS
files.

• Domain sharding and content otherwise split among multiple
servers is a significant impediment to Server Push’s effective-
ness.

• Server Push shows the best relative performance improve-
ments with high latencies and loss rates, offering a median

C
lie
nt

S
erver

example.html

example.png

Normal HTTP Requests

C
lie
nt

S
erver

example.html
example.html

example.png

example.html

example.png

Server Push

Figure 1: A simplified view of how Server Push results in per-
formance benefits.

16% improvement in PLT with a 2% loss rate and a 14%
improvement with a round trip time of 100 ms, but exces-
sively poor network performance hurts Server Push. Some
sites also see substantial benefits at low bandwidths.

• Server Push doesn’t improve performance on every website,
and so should be used judiciously, by testing Server Push
performance before a widespread deployment.

• Server Push reduces LTE power consumption on mobile de-
vices by about 9% and has no significant impact on WiFi
power consumption.

2. BACKGROUND
HTTP/2 has been recently proposed as a replacement to HTTP/1.1,

promising to offer better performance, and addressing some of the
performance limitations of HTTP/1.1 [14]. One major feature of
HTTP/2 is Server Push. As shown in Figure 1, in a somewhat
simplified form, without Server Push it has been necessary for the
browser to fetch the first HTML page and parse it before making re-
quests for subsequent objects required by the first HTML page (and
these objects may have further dependencies). Thus, two round
trips are needed to load all the content for this example web page,
and more round trips for more complex pages. However, the server
in many cases likely already knows what content will be requested,
and so the extra step of having the client request the object could
be removed from the critical path.

This feature has been introduced into several major implemen-
tations of HTTP/2 [16], including nghttp2 [22], H2O [11], and,
recently, Apache [2]. As it is part of the HTTP/2 standard [3], all
implementations should eventually support it. Work by Varvello
et al [31] showed that while HTTP/2 adoption is still rare, major
players such as Google and hosting providers have adopted it and
driven a slow but steady growth.

While this is the first work focusing on Server Push specifically,
the performance benefits of HTTP/2 more broadly have been shown
to be complex and varied [33], particularly on mobile devices [8].
Understanding how and when we can benefit from Server Push
through a comprehensive measurement study would thus be valu-
able.

We believe this motivates examining how to use Server Push
more effectively, as there is an opportunity to inform how web
pages deploy Server Push in the future, and a better understand-
ing of Server Push may lead to more widespread use.

3. DATASET AND METHODOLOGY
Since so few sites make use of Server Push, we conducted con-

trolled experiments using mirrored sites hosted locally to test the
impact of network performance, and ran other experiments to un-
derstand Server Push under a variety of circumstances.

Table 1: Summary of web page characteristics (out of a total of
50 sites).

Min value Median value Max value
Num. objects 6 64.5 440

- Images 0 25.0 435
- Javascript 0 7.0 51
- CSS 1 1.0 7

Page size 46 Kb 1.86 Mb 10 Mb

We mirrored a total of 50 sites from the Alexa top 500 starting
with the most popular, with essentially identical websites omitted:
for instance, we included the main Google page, but not the pages
of individual country versions of Google. Sites were copied using
the Firefox Scrapbook extension [27], including all Javascript, and
where necessary manually edited to remove popups and redirects
that interfered with automated analysis, and to ensure where possi-
ble content is loaded locally. Sites that could not be hosted locally
without substantial modifications were skipped. The mobile ver-
sion of the page was used in our analysis. We summarize some
statistics on the pages in Table 1.

These sites were hosted on a server using nghttp2 [22], which
has a complete implementation of Server Push. Its library is now
used by other servers, in particular Apache [2]. We collected at
least 5 measurements for each experiment, randomizing the order
in which the sites were visited. Except for when exploring how
much content to push, all content was pushed as we found that to
be the most effective approach, as we will show in the next sec-
tion. Nghttp2 prioritizes the HTML page first, then the CSS files,
then the Javascript files, then images and other content, according
to their documentation1. Exploring the impact of non-standard pri-
oritization approaches is left to future work.

On the client side, all experiments were run in an up-to-date
Chrome browser. Our first set of experiments were carried out on
two mobile devices: a Samsung S5 and (to compare with an older
phone) a Samsung S3. Page load time measurements were col-
lected using Chrome’s debug interface accessible by plugging the
phone into a computer and going to chrome://inspect#devices.
The page load times are those listed by Chrome. All experiments
were conducted with caching disabled, and the values of three mea-
surements were averaged, rather than five, due to the manual effort
involved.

Controlled experiments, where latency, loss rates and bandwidth
were varied, were carried out over Ethernet on a desktop (except
for the bandwidth experiments, which were performed over Ether-
net with a laptop). This allowed us to be able to precisely control
each of these variables. However, in most cases we are examin-
ing the sorts of network conditions that are more typical for mobile
devices than for desktops or laptops on modern Ethernet connec-
tions. For these, page load time information was collected by a
script which connects to Chrome’s remote debug interface through
a JSON API2. Latency and loss rates were varied using tc, a stan-
dard Linux utility that allows different network conditions to be
emulated. Bandwidth was varied using the built-in Mac OS net-
work emulation tools on a laptop. We also collected performance
data for WiFi and tethering on the same laptop. We also collected

1https://nghttp2.org/blog/2014/04/27/how-dependency-based-
prioritization-works/
2https://developer.chrome.com/devtools/docs/debugger-protocol

values on mobile devices. Unfortunately, the API was not avail-
able on mobile devices, but the page load times indicated in the
GUI-based debug interface used for the mobile phone experiments
is equivalent, and values were manually collected using this inter-
face.

To calculate the energy overhead of Server Push, we made use of
the power model in a recent paper [24], using the same parameters
as in that paper. We collected tcpdump traces from our page loading
experiments and calculated the power impact of Server Push with
both the WiFi and cellular network.

4. WEB PERFORMANCE
There are a number of factors that impact Server Push perfor-

mance that we examine. We first look at the impact of pushing dif-
fering amounts of content, and demonstrate that the current trend
of distributing a web page’s content across many domains intro-
duces significant challenges for Server Push. We then examine
how various network conditions can impact Server Push perfor-
mance, demonstrating Server Push is mainly helpful for networks
likely to experience poor network performance, such as mobile net-
works. We then examine differences between websites that do well
or poorly with Server Push. We summarize the findings in this pa-
per in Table 2.

4.1 Impact of Content Pushed
First, we examine existing sites that use Server Push and what

they do, then determine a good strategy for determining what con-
tent to push.

Server Push is still rarely used in practice. We used the nghttp2
client to crawl the top 10,000 sites according to Alexa in September
2016. Our client attempted to connect using HTTP/2, and recorded
whenever a PUSH_PROMISE header is seen which indicates the
start of an object being pushed. We found five sites which used
Server Push (plus one more that logged a Server Push request in
our automated testing, but not when we examined it manually a
few days later).

We looked at each of the five websites using Server Push in
Google Chrome and manually examined what was pushed. They
took a variety of approaches: one site pushed everything except
dynamic content (www.neobux.com); other sites pushed just one
Javascript file (www.cloudflare.com; www.yoob.com); another
pushed its Javascript and CSS files (www.kroger.com) and one
pushed a selection of Javascript and image files, but not all (www.
namepros.com).

We next compared two strategies for pushing content: pushing
only CSS and Javascript files, and pushing everything. For this
experiment, we looked at our locally mirrored websites, as unfor-
tunately we cannot set the push policy for real sites in the wild. We
emulated a high-latency network (such as a cellular network) by
adding 100 ms to the latency on an Ethernet connection, in ad-
dition to testing on a low latency network (1 ms ping, taking a
total of about 30ms for a small object to load). The results are
shown in Figure 2. We show the relative performance benefit —
the ratio of the number of seconds saved due to Server Push to the
original page load time. Clearly, Server Push performs a lot bet-
ter when we push everything, and we recommend pushing more
content where possible. Interestingly, pushing everything seems to
matter more on higher latency networks: pushing just Javascript
and CSS give similar results on the two networks, but pushing ev-
erything is much more helpful on the high latency network. Using
nghttp2’s hard-coded priorities, HTML was pushed first, then CSS,
then Javascript, then all other content. We leave exploring other
methods of prioritizing content to future work.

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (ratio)

No added latency

push everything
push jss/css

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (ratio)

100ms latency

Figure 2: Pushing all content versus pushing only Javascript
and CSS files. Both graphs show the ratio of the time saved due
to Server Push to the original page load time.

There is one major complication in pushing everything. In prac-
tice, content is often split over several domains, whether due to
third-party advertisement, domain sharding, or other reasons. To
examine the impact of this problem, we went through each page
and manually determined whether each object came from the same
domain or a different domain. We then moved that content to an-
other server, and didn’t push that content. In the median case for the
50 sites, we moved more than 95% of the objects to another server.
Most major websites host images and other content separately, al-
though a few websites were mostly unchanged. We found almost
no benefit from Server Push in this case: Only 25% showed any
measurable benefit, and less than 15% showed more than a 10%
performance improvement. Clearly, the way in which websites are
architected today are a major problem for the deployment of Server
Push, and which should be addressed in future work.

HTTP/2 promises to make domain sharding unnecessary [15],
and it is generally recommended not to use domain sharding in
HTTP/2 [23]. Recent work has also discussed that content on a
website served from outside a CDN can cause substantial perfor-
mance degradation [9], motivating further keeping content on one
server wherever possible. However, in the short term it’s unlikely
that websites will be drastically re-architected.

4.2 Impact of the Network
To understand how network conditions impact Server Push, we

vary network performance parameters in a controlled manner by
adding latency, loss and limited bandwidth to an Ethernet connec-
tion.

First of all, what networks should we focus on, when deploy-
ing Server Push? We first examine several typical connections: the
local LTE network, a home WiFi network, and the Ethernet connec-
tion in the lab. Typically, the LTE network experiences latencies of
roughly 90 ms, the WiFi network of about 25 ms, and latencies of

Table 2: Summary of findings.

What to push
Push as much content as possible, not just a few small files. Fig. 2
Content divided across domains is a major problem. §4.1
Server Push increases the loading time for the initial HTML object and so can harm performance. Fig. 5

Network factors
Highest improvement on WiFi and LTE for a given device; mobile devices are limited by their processing power. Fig. 3
Higher improvement with high latencies (100ms). Fig. 6
High loss rates harm performance improvement for some pages but others benefit between 0.5% and 2% Fig. 7
High losses and latencies combined don’t do well with Server Push. Fig. 8
Server Push is slightly more beneficial with low bandwidth. Fig. 9

Energy impact (§6)
Server Push improves LTE energy consumption slightly (by about 9%). Fig 15
Server Push has almost no impact on WiFi energy consumption. Fig 15

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (ratio)

WiFi (laptop)
LTE (tethering)

LTE (phone)
Ethernet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Reduction in PLT (s)

Figure 3: Server Push PLT savings for mobile websites on a va-
riety of networks. The top graph shows the ratio of PLT savings
to original PLT, and the bottom graph shows the absolute PLT
improvement. Negative values cut off at -0.5 for the top graph
and -1 for the bottom.

about 1 ms for the Ethernet network (the server hosting the pages
was on campus). The time to first byte for the first object with a 1
ms latency was around 30ms for a small object. As we show later
in this section, even more typical latencies of up to 50 ms perform
similarly over Ethernet.

We show the results in Fig. 3, where we show both the absolute
improvement in seconds, and the ratio of the time saved due to
Server Push to the initial page load time (PLT). Server Push can
greatly improve performance — reducing PLT by up to 80% in
the best case — but in many other cases, Server Push does not
help. LTE and WiFi benefit more from Server Push than Ethernet

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

Sam
sung-S5

Sam
sung-S3

LTE-tethering

P
L
T

 i
m

p
ro

v
e
m

e
n
t
(r

a
ti
o
)

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

Sam
sung-S5

Sam
sung-S3

LTE-tethering

P
L
T

 i
m

p
ro

v
e
m

e
n
t
(s

)

Figure 4: Impact of device processing power on Server Push.
The left graph shows the ratio of the PLT savings to the original
PLT, and the right graph shows the absolute PLT improvement
in seconds.

does. For this reason, we believe it makes sense to focus on mobile
devices when determining when and how to use Server Push.

However, on an actual mobile device on LTE, savings as a per-
cent of the original PLT shrink, although they remain higher than
a laptop using Ethernet. Recent work has found the lower process-
ing power of mobile devices makes the loading time less network-
dependent [20]. We still see performance improvements, though.
Furthermore, despite this limitation, there are savings of hundreds
of milliseconds on average, and in some cases seconds. Even sav-
ing 100 ms can have a high benefit [13].

Next, we tested a second mobile phone (a Samsung S3) on a dif-
ferent carrier (still LTE), to make sure our results are not specific
to a particular device or network. We show the results in Figure 4.
The two phones show very similar results, suggesting our results
on the phone are at least somewhat representative. The older phone
generally experiences larger absolute page load times. The lap-
top with tethering does better though; substantial improvements in
processing power would be needed to see the full benefit of Server
Push on mobile phones.

It is also apparent that the benefits of Server Push can be lower
than zero, a phenomenon first mentioned by Wang et al [33]. We
examine why Server Push does not show positive performance ben-
efits in every case. Server Push tends to make the initial HTML file
slower to load, sometimes quite substantially, as shown in Figure 5.
This is the case even though nghttp2 sends HTML traffic with a

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-2 0 2 4 6 8 10 12 14

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
s
it
e
s

Ratio of increase in first (HTML) object load time to original load time

Figure 5: Relative increase in the loading time of the initial
HTML object with Server Push: this increase leads to Server
Push in some cases performing poorly overall.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

0m
s

25m
s

50m
s

100m
s

P
L
T

 i
m

p
ro

v
e
m

e
n
t
(r

a
ti
o
)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

0m
s

25m
s

50m
s

100m
s

P
L
T

 i
m

p
ro

v
e
m

e
n
t
(s

)

Figure 6: Impact of network latency on Server Push, with
both the relative decrease in latency (left) and absolute decrease
(right) shown. Latencies shown are from ping; at 0ms, a small
object takes about 30ms to load including server processing etc.

higher priority — we seem to still see interference from other re-
quests. For Server Push to be beneficial, it has to offer savings
greater than this cost, which is why we only see benefits for some
websites.

Next, we examine individual network performance factors, vary-
ing the bandwidth, latency and loss rate of an Ethernet connection
while holding the other variables constant. We use Ethernet to mea-
sure the impact of each variable in a controlled manner, as WiFi or
LTE are likely to show a wider range of latencies and losses while
we run these experiments, making it harder to draw a firm conclu-
sion.

Latency: Fig. 6 shows the results of varying the latency. There
is a sudden jump in the performance improvement between 50ms
and 100ms, where web pages are likely becoming more network-
bound. At higher latencies, pages are more likely to become network-
bound, although the effect of delaying the initial HTML object may
be worsened.

Packet loss: The impact of packet loss is fairly substantial as
well, as shown in Figure 7. Looking at the leftmost cluster in that
figure, where there are both uplink and downlink losses, it can be
seen that as loss rates increase, some websites perform substan-
tially worse with Server Push as compared to not using Server Push.
High loss rates of around 3% can also affect the initial download
burst of content, exacerbating the problem of it slowing down the
page load time. With slightly lower loss rates, however, for some
pages Server Push is able to mask the slower resulting loading time
of these pages. At about a 0.5% loss rate, websites almost consis-
tently do better than with no loss. Also, sites that perform badly
tend to perform worse at high loss rates.

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

0%
/0%

0.5%
/0.5%

1%
/1%

2%
/2%

3%
/3%

0.5%
/0%

1%
/0%

2%
/0%

0%
/0.5%

0%
/1%

0%
/2%

P
L
T

 i
m

p
ro

v
e
m

e
n
t
(r

a
ti
o
)

-4

-3

-2

-1

 0

 1

 2

 3

 4

0%
/0%

0.5%
/0.5%

1%
/1%

2%
/2%

3%
/3%

0.5%
/0%

1%
/0%

2%
/0%

0%
/0.5%

0%
/1%

0%
/2%

P
L
T

 i
m

p
ro

v
e
m

e
n
t
(s

)

Uplink/downlink losses

Figure 7: Impact of network packet loss on Server Push in rel-
ative (top) and absolute (bottom) terms. Labels indicate the
uplink loss rate followed by the downlink loss rate. Negative
values are cropped at -3 for the top graph and -4 for the bot-
tom.

To understand why at very high loss rates performance benefits
disappear, we examined some waterfall diagrams in Chrome, and
found that some objects load slowly enough that loading objects
somewhat earlier had a very minor effect, and also that the problem
of the pushed objects slowing down the download time of the first
few objects becomes a major factor. It is also known from prior
work that HTTP/2 tends to perform poorly under high loss rates
as there is a single TCP connection whose congestion window is
affected by the losses [33].

We then look at uplink and downlink losses individually in the
middle and the right hand side of the figure, and it’s apparent that
downlink losses hurt Server Push more than uplink losses: Server
Push can mask uplink losses since fewer requests to the server are
needed with Server Push, but downlink losses can affect the initial
set of downloads that sometimes leads to a slower PLT with server
push.

If we look at high loss rates and latencies combined, as in Fig-
ure 8, Server Push also doesn’t perform well (values collected on
44 websites for these experiments only). In fact, we see decreasing
performance with increasing latency when there’s a substantial loss
rate. Note how the distributions get much wider at high loss rates:
pages that do poorly do a lot worse, but some pages that do well do
a lot better.

In general, high latencies are more common on mobile networks
than high loss rates.

Bandwidth: The amount of available bandwidth has an impact,
as can be seen in Figure 9. For these values, a delay of 30ms
was added as otherwise the impact of bandwidth is not very pro-
nounced. As before, not all sites benefit when the bandwidth is low,
and in fact the median value remains around zero, but when web-
sites benefit from Server Push, they benefit more with low band-
width.

-20

-15

-10

-5

 0

 5

 10

0.5%
/0m

s

0.5%
/25m

s

0.5%
/50m

s

0.5%
/100m

s

1%
/0m

s

1%
/25m

s

1%
/50m

s

1%
/100m

s

2%
/0m

s

2%
/25m

s

2%
/50m

s

2%
/100m

s

Im
p
ro

v
e
m

e
n
t
in

 P
L
T

 (
s
)

Figure 8: Impact of combined high latencies and loss rates.
The loss rate is listed first (both directions), then the latency,
as a percent and number of milliseconds, respectively. Extreme
negative values are cropped.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

5M
bps

10M
bps

15M
bps

unlim
ited

P
L
T

 i
m

p
ro

v
e
m

e
n
t
(r

a
ti
o
)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5M
bps

10M
bps

15M
bps

unlim
ited

P
L
T

 i
m

p
ro

v
e
m

e
n
t
(s

)

Figure 9: Impact of bandwidth at 30ms latency. The ratio of
the performance savings to the loading time are shown in the
left graph, and the absolute performance savings are shown in
the right graph .

Overall, it appears that Server Push can mitigate network per-
formance problems for some websites, but network performance
problems also exacerbate the problem of the initial HTML object
being delayed, and the latter issue can become the dominant factor
when network performance is sufficiently bad.

4.3 Impact of the Web Page
We examined a number of web page metrics, and found that the

one that best predicts if Server Push will show performance benefits
is the time for the object after the initial HTML page to load. With
a latency of 100 ms, a load time of that object of 125 ms or higher
resulted in an average Server Push improvement of 27% (versus
13% overall). With loss rates of 0.5% to 2%, if the loading time is
above 150 ms, there was an average performance improvement of
35%.

To understand why that is the case, we performed a controlled
experiment: we created a page with a significant amount of Javascript
computation, and with 5 images to load. We then varied the number
of figures that loaded after the Javascript, and show the results in
Figure 10. Content that loads after computation runs can be fetched
early by Server Push in parallel with the computation, resulting in
higher performance savings as the download time can be hidden
behind the compute time. However, this network traffic has to have
a substantial impact on the overall loading time to matter.

We also examined if the website size has an impact on Server
Push performance. To do so, we examined loading artificial web-

 0

 50

 100

 150

 200

 250

 1 2 3 4 5

R
e

d
u

c
ti
o

n
 i
n

 P
L

T
 (

m
s
)

Number of images delayed (out of 5)

Figure 10: Relative benefits of pushing content for sites with a
significant amount of computation, with 1-5 of 5 figures loading
after the Javascript computation and the rest loading before.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

R
e
d
u
c
ti
o
n
 i
n
 P

L
T

 (
ra

ti
o
)

Number of images

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30

P
L
T

 i
n
 m

s

Number of images

No push
Server push

Figure 11: Impact of web page size on Server Push with a 100
ms delay and 10 Mbps bandwidth.

sites that were identical except for the number of images on the
page. The results are shown in Figure 11. As we increase the num-
ber of images, the benefits of Server Push increase as it is able to
reduce the resulting loading time increase. However, we did not
find the size to consistently lead to better Server Push performance
on real websites: other factors, such as the amount of computation
and rendering, had more of an effect.

4.4 Summary
Overall, we’ve found that Server Push works best with wireless

networks, although the performance limitations of mobile devices
limit Server Push’s performance. Even so, the relative performance
improvements on wireless networks are higher than over Ethernet,
and tends to be better when network conditions are poor. However,
Server Push introduces a delay to the first HTML object, and so
not all websites benefit from Server Push. Looking deeper into the
network characteristics that lead to good Server Push performance,
Server Push can mitigate the effects of network performance prob-
lems for many websites, but if network performance is too poor,
pages become unable to benefit from Server Push.

5. CASE STUDIES
We next examine examples of real sites and how they load, in a

variety of circumstances, to better understand how Server Push af-
fects performance. These experiments were carried out on a phone
over LTE, unless otherwise stated. Our plots show only the browser
load times and not the push download times. The browser load time
is the time for the browser to fetch and load a given object, from
when the browser first makes the request to when it is fully loaded,
extracted from the HTTP Archive (.har) file saved from the debug

O
b

je
c
ts

 w
it
h

o
u

t
p

u
s
h

Browser load time
Page Load Time

0 1000 2000 3000 4000 5000 6000

O
b

je
c
ts

 w
it
h

 p
u

s
h

milliseconds since first request

Figure 12: Waterfall diagram of loading the IKEA web site in
a phone browser. The time for each successive object to load
is shown as a horizontal line with a begin and end point corre-
sponding to the first and last byte received. Objects are shown
vertically in order of when they begin loading.

O
b

je
c
ts

 w
it
h

o
u

t
p

u
s
h

Browser load time
Page Load Time

0 5000 10000 15000 20000 25000 30000

O
b

je
c
ts

 w
it
h

 p
u

s
h

milliseconds since first request

Figure 13: Waterfall diagram of loading the BBC website in a
phone browser.

view in Google Chrome. When content is pushed, the browser load
time for each object that is shown in the plots is much smaller, as
the push time is not included in that value.

First, we show the mirrored IKEA page in Figure 12. This is
a fairly straightforward case: loading happens over several stages,
and especially after the first few objects, the loading time is shorter
because Server Push has already delivered (most of) the content.
Rendering and other computation does play a major role in the
page load time, but reducing the network loading time helps sub-
stantially. Note that a significant amount of content is loaded after
some computation, like in Figure 10.

The BBC website also loads in batches, but is more complex,
and more time is spent in computation. We show the results in

O
b

je
c
ts

 w
it
h

o
u

t
p

u
s
h

Browser load time
Page Load Time

0 2000 4000 6000 8000 10000 12000 14000

O
b

je
c
ts

 w
it
h

 p
u

s
h

milliseconds since first request

Figure 14: Waterfall diagram of loading the BBC website over
WiFi on a laptop.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200

C
u
m

u
la

ti
v
e
 f
ra

c
ti
o
n
 o

f
p
a
g
e
 l
o
a
d
s

Energy per page load (J)

LTE

No push
Push

 0 0.5 1 1.5 2

Energy per page load (J)

WiFi

Figure 15: Radio energy trends for mobile devices. Server Push
offers some savings for LTE only.

Figure 13. While it’s apparent that the network loading time is
reduced substantially, only the computation and rendering time is
on the critical path in this case. Note that these results are on a
mobile phone, where computation is more frequently on the critical
path. With a laptop on WiFi, we see better performance for Server
Push, as shown in Figure 14. Server Push is not able to reduce the
loading time of the first burst of traffic, as there is too much in total
to load. The last chunk of network traffic has been fetched by the
time the browser requests it. Because of the last burst of network
traffic being fetched, close to two seconds are shaved off, or a little
under 20%.

6. ENERGY IMPACT OF SERVER PUSH
We next consider the impact on radio energy on mobile devices.

Ideally, if Server Push reduces the time that the radio is active, by
essentially “compacting" requests into one burst, then it should re-
sult in energy savings.

We collected packet traces over WiFi and LTE, and calculated
the energy consumed by the radio based on the model given in a
recent paper [24]. The results are shown in Figure 15. We found
there to be modest but observable power savings with LTE, but not
with WiFi. WiFi only keeps the radio awake briefly after data is
sent, and so WiFi is less dependent on the distribution over time

Table 3: Summary of recommendations.

Test if websites actually benefit § 4.2 Easy
Push as much content as possible Fig. 2 Easy
Host everything on one server § 4.1 Medium
Develop tools for 3rd-party content § 4.1 Hard
Tailor to different network conditions § 4.2 Hard

in which requests are made. With LTE, however, the radio stays
active for some time after data is no longer sent. We see a 9%
improvement on average with LTE.

7. DISCUSSION
In this paper, we found that the improvements due to Server Push

are more pronounced under high loss or high latency conditions, as
well as on wireless networks (WiFi and LTE). While less computa-
tionally powerful devices tend to benefit less from Server Push for
a given set of network conditions, the fact that mobile devices are
more likely to experience poor network conditions in the first place
means these are good devices to target.

We have focused on the performance benefits of Server Push, but
there are other obstacles to Server Push being effectively and com-
monly used. The first is the problem of client caching. Since the
server doesn’t know what the client has cached, there is potentially
more overhead in terms of data wasted with Server Push. There
have been various solutions proposed, however [12, 22]. The sec-
ond challenge is dynamic content: we may not be able to determine
what to push, and we leave predicting dynamic content to future
work.

Also, we use the default order for pushing content, and don’t ex-
plore alternate orderings based on, say, dependencies. There are a
number of papers that have proposed systems to analyze web page
loading dependencies [5, 21, 18]. An interesting direction for fu-
ture work would be to explore and adapt these methods to further
optimize loading time by avoiding pushing content unnecessarily.

Finally, we analyze mirrored websites, because there are almost
no real websites using Server Push. It is possible, however, that as
Server Push is deployed on production servers, other factors affect-
ing Server Push will become apparent. We hope that our findings
will motivate more sites to make use of Server Push.

We have focused on web browsing, but Server Push may be ap-
plicable to many other uses of HTTP. In particular, we have not
examined mobile apps, which may be able to leverage Server Push
even if they do not have the typical structure of an HTML page with
images and other content embedded in it. We leave examining this
to future work.

Recommendations: We summarize our recommendations in Ta-
ble 3, in order of how practical they are to implement. Overall,
we have found there are some fundamental challenges in making
Server Push effective, and more work is likely needed to make it a
solution for every website. However, there are some solutions that
can be done today by website developers.

The most important takeaway from this paper is that you should
measure if Server Push helps your site before putting time or re-
sources into pursuing it. This could be done by setting up a test
server with Server Push and simply measuring the loading time
with and without Server Push with a mobile device under a range
of conditions (or perhaps a range of mobile devices, if you want to
be thorough). Also, websites should push as much content as pos-

sible. For some web pages, this would be possible. However, this
may not be sufficient to make Server Push work for everyone.

In order to make pushing everything possible, the next step is
to host everything on one server. This is recommended, in any
case, for HTTP/2 [23]. This may not be practical for every website,
however. There are likely more long-term solutions that would be
harder to deploy. For instance, a mobile-specific proxy similar to
Flywheel [1] which enables HTTP/2 as well could potentially be
used. At least one HTTP/2 proxy exists that supports Server Push,
which is intended to provide HTTP/2 for servers using other pro-
tocols [22]. These solutions would likely be more challenging to
deploy in practice, though.

Future work could also explore methods of alerting third-party
servers as to what to push, for instance by having small embedded
objects that load early, thus informing those third-party servers that
they should push content.

Finally, we found that the network characteristics of web pages
make a major difference, and recommend that sites decide when to
push content accordingly. This recommendation is likely the hard-
est to act upon. In the context of a mobile app, it might be possible
to profile what network performance the average user sees, and de-
cide whether to use Server Push accordingly. Somehow inferring
network conditions to determine when to use Server Push would
be an interesting direction for future research. In general, though,
Server Push is more beneficial over wireless than modern, high-
speed wired networks, hence our focus on mobile devices in this
study.

Overall, we suggest that Server Push is ready to be used by some
web pages today, but that a certain degree of effort on the part of
website developers is likely required for many web pages, and there
are ample future research directions to help Server Push reach its
full potential.

8. RELATED WORK
Next generation web protocols: Recent work has found the per-

formance benefits of these protocols are mixed. Varvello et al [31]
found that the prevalence of HTTP/2 is small but rapidly growing,
driven by a few key players, and that it offers performance bene-
fits in the wild. “How Speedy is SPDY?" [33] observed that the
performance impact of SPDY depends on many complex factors,
and that Server Push gives performance improvements with high
RTT. We examine the factors that impact Server Push performance
in more depth. The impact of SPDY on mobile devices specifi-
cally has also been examined: work by Erman et al [8] found that
SPDY does not consistently give performance benefits on cellular
networks. Work by Carlucci et al [6] examines the performance
of QUIC and finds mixed results. A study of SPDY performance
by Elkhatib et al [7] finds that SPDY’s performance as a whole
is impacted by network performance and web infrastructure. Re-
cent work by Zarifis et al [37] built and evaluated a model that can
predict HTTP/2 performance from HTTP/1, and briefly examined
the impact of Server Push, showing that it generally improves per-
formance. Although some prior work has briefly touched on Server
Push, we are the first to study Server Push specifically and in depth.

Understanding mobile and web performance: Understanding
browsing performance more generally has been an area of recent
interest. WProf [32] finds performance dependencies in browsers.
Work by Netaji et al [20] finds that a major cause of slow mobile
browsing is the computation overhead. Work by Qian et al [26] ex-
amines how existing websites are designed and the impact on per-
formance and resource usage. Work by Wang et al [35] examines
sources of delays in mobile web browsers. Work by Butkiewicz
et al [4] examines how website complexity impacts performance.

WebProphet [18] predicts page load times from object dependen-
cies. Work by Imh et al [17] also characterizes websites, and their
finding that a substantial amount of content is cacheable reinforces
the need for Server Push to account for caching. Work by Goel
et al [10] examines the performance impact of using IPv6 on mo-
bile devices and suggests some mechanisms for CDNs to ensure
good network performance when transitioning to IPv6. Work by
Nikravesh et al [25] examines longitudinal trends in mobile net-
work performance generally.

Other recent papers examine network factors relevant to Server
Push. Work by Sundaresan et al [30] investigates residential broad-
band, and determines that the round trip time is still a bottleneck.
Work by Zaki et al [36] examines factors affecting network perfor-
mance in a developing country, and finds that SPDY works partic-
ularly well. Work by Narayanan et al [19] observes that content
is often poorly distributed among CDNs. They also observe that a
significant percentage of content is served from CDNs, which may
have implications for Server Push deployment by third parties.

Improving mobile and web performance: There has also been
a lot of interest recently in building systems that improve brows-
ing performance. Polaris [21] makes computation more efficient
by better detecting dependencies and scheduling requests through
a client-side scheduler. Parcel [29] splits browsing functionality
between a proxy and mobile browser to improve performance, and
Flywheel [1] is a compression proxy for mobile devices used in the
wild which halves the size of mobile pages. Flexiweb [28] dynam-
ically adapts proxy optimizations based on network conditions and
website characteristics: this approach would likely be beneficial
for Server Push as well. Klotski [5] examines automatically detect-
ing dependencies and scheduling object downloads using a proxy.
Shandian [34] optimizes the order and manner in which content is
loaded, using a proxy.

9. CONCLUSION
Overall, we have found that Server Push can offer substantial

performance benefits. Server Push shows the best relative improve-
ments when latency or loss rates are high (bandwidth has a smaller
impact) and on sites where objects are requested late in the loading
process. Mobile networks are particularly suitable for Server Push,
although the limited processing power of mobile devices reduces
the benefits of Server Push, and Server Push is likely to become
substantially more useful as mobile devices become more power-
ful. However, the way modern websites are constructed, with con-
tent divided across many servers, is a substantial problem. Further-
more, performance benefits vary greatly by website, and in some
cases Server Push can be detrimental to performance, so it should
be deployed only after verifying it will show performance benefits.

10. ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers for their valu-

able comments. This research was supported in part by the NSF
grants CNS-1566331 CNS-1059372, CNS-1345226, CNS-1629894,
and CCF-1629347, as well as by an NSERC Canada PGS D schol-
arship.

11. REFERENCES
[1] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan,

B. Greenstein, S. McDaniel, M. Piatek, C. Scott, M. Welsh,
and B. Yin. Flywheel: Google’s Data Compression Proxy for
the Mobile Web. In Proc. NSDI, 2015.

[2] Apache Module mod_http2. https:
//httpd.apache.org/docs/2.4/mod/mod_http2.html.

[3] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer
Protocol Version 2 (HTTP/2). RFC 7540.

[4] M. Butkiewicz, H. V. Madhyastha, and V. Sekar.
Understanding Website Complexity: Measurements, Metrics,
and Implications. In Proc. ACM IMC, 2011.

[5] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and
V. Sekar. Klotski: Reprioritizing Web Content to Improve
User Experience on Mobile Devices. In Proc. NSDI, 2015.

[6] G. Carlucci, L. De Cicco, and S. Mascolo. HTTP over UDP:
An Experimental Investigation of QUIC. Proc. ACM SAC,
2015.

[7] Y. Elkhatib, G. Tyson, and M. Welzl. Can SPDY really make
the web faster? In IFIP Networking, 2014.

[8] J. Erman, V. Gopalakrishnan, R. Jana, and K. K.
Ramakrishnan. Towards a SPDY’Ier Mobile Web? In
CoNEXT, 2013.

[9] U. Goel, M. Steiner, W. Na, M. P. Wittie, M. Flack, and
S. Ludin. Are 3rd Parties Slowing Down the Mobile Web? In
Proc. S3 Workshop, 2016.

[10] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin. A
Case for Faster Mobile Web in Cellular IPv6 Networks. In
Proc. ACM MobiCom, 2016.

[11] H2O: The optimized HTTP/1.x, HTTP/2 server .
https://h2o.examp1e.net/index.html.

[12] B. Han, S. Hao, and F. Qian. MetaPush: Cellular-Friendly
Server Push For HTTP/2. In AllThingsCellular, 2015.

[13] Latency is Everywhere and it Costs You Sales - How to
Crush it. https://goo.gl/bRi5Xs.

[14] HTTP/2. https://http2.github.io/.
[15] HTTP/2 FAQ. https://http2.github.io/faq.
[16] http2/http2-spec: Implementations. https://github.com/

http2/http2-spec/wiki/Implementations.
[17] S. Ihm and V. S. Pai. Towards Understanding Modern Web

Traffic. In IMC, 2011.
[18] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M.

Wang. WebProphet: Automating Performance Prediction for
Web Services. In Proc. NSDI, 2010.

[19] S. Narayanan, Y. Nam, A. Sivakumar, B. Chandrasekaran,
B. Maggs, and S. Rao. Reducing Latency through
Page-aware Management of Web Objects by Content
Delivery Networks. In Proc. ACM SIGMETRICS, 2016.

[20] J. Nejati and A. Balasubramanian. An In-depth Study of
Mobile Browser Performance. In WWW, 2016.

[21] R. Netravali, J. Mickens, and H. Balakrishnan. Polaris:
Faster Page Loads Using Fine-grained Dependency
Tracking. In Proc. NSDI, 2016.

[22] Nghttp2: HTTP/2 C library and tools.
https://nghttp2.org/.

[23] 7 Tips for Faster HTTP/2 Performance.
https://www.nginx.com/blog/
7-tips-for-faster-http2-performance/.

[24] A. Nika, Y. Zhu, N. Ding, A. Jindal, Y. C. Hu, X. Zhou, B. Y.
Zhao, and H. Zheng. Energy and Performance of Smartphone
Radio Bundling in Outdoor Environments. In WWW, 2015.

[25] A. Nikravesh, D. R. Choffnes, E. Katz-Bassett, Z. M. Mao,
and M. Welsh. Mobile Network Performance from User
Devices: A Longitudinal, Multidimensional Analysis. In
Passive and Active Measurement Conference, 2014.

[26] F. Qian, S. Sen, and O. Spatscheck. Characterizing Resource
Usage for Mobile Web Browsing. In Proc. ACM MobiSys,
2014.

[27] Scrapbook: Addons for Firefox. https://addons.
mozilla.org/en-US/firefox/addon/scrapbook/.

[28] S. Singh, H. Madhyastha, K. S.V., and R. Govindan.
FlexiWeb: Network-Aware Compaction for Accelerating
Mobile Web Transfers. In Proc. ACM MobiCom, 2015.

[29] A. Sivakumar, S. Puzhavakath Narayanan,
V. Gopalakrishnan, S. Lee, S. Rao, and S. Sen. PARCEL:
Proxy Assisted BRowsing in Cellular Networks for Energy
and Latency Reduction. In CoNEXT, 2014.

[30] S. Sundaresan, N. Feamster, R. Teixeira, and N. Magharei.
Measuring and Mitigating Web Performance Bottlenecks in
Broadband Access Networks. In Proc. ACM IMC, 2013.

[31] M. Varvello, K. Schomp, D. Naylor, J. Blackburn,
A. Finamore, and K. Papagiannaki. Is The Web HTTP/2 Yet?
In Passive and Active Measurement Conference, 2016.

[32] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall. Demystifying Page Load Performance with
WProf. In Proc. NSDI, 2013.

[33] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall. How Speedy is SPDY? In Proc. NSDI, 2014.

[34] X. S. Wang, A. Krishnamurthy, and D. Wetherall. Speeding
up Web Page Loads with Shandian. In NSDI, 2016.

[35] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. Why Are
Web Browsers Slow on Smartphones? In Proc. ACM
HotMobile, 2011.

[36] Y. Zaki, J. Chen, T. Pötsch, T. Ahmad, and L. Subramanian.
Dissecting Web Latency in Ghana. In Proc. ACM IMC, 2014.

[37] K. Zarifis, M. Holland, M. Jain, E. Katz-Bassett, and
R. Govindan. Modeling HTTP/2 Speed from HTTP/1 Traces.
In Passive and Active Measurement Conference, 2016.

