
When Should We Surf the Mobile Web Using Both
WiFi and Cellular?

Bo Han
AT&T Labs – Research

Bedminster, NJ
bohan@research.att.com

Feng Qian
Indiana University
Bloomington, IN

fengqian@indiana.edu

Lusheng Ji
AT&T Labs – Research

Bedminster, NJ
lji@research.att.com

ABSTRACT
In this paper, we investigate when to browse the web using WiFi
and cellular simultaneously on mobile devices. Our observation,
based on empirical measurements, is that mobile web may not al-
ways benefit from multipath, which motivates a cost-benefit anal-
ysis. However, it is challenging to analyze the benefits (i.e., im-
proved user experience) and costs (e.g., energy consumption) of
web browsing, due to HTTP’s resource fetching model. We pro-
pose to use server push, a standard feature in HTTP/2, to provide
an ideal framework for the cost-benefit analysis. We then design
a practical system that reduces resource footprint for mobile web
over multipath by providing adaptive multipath support.

CCS Concepts
•Networks→ Cross-layer protocols; Transport protocols; Appli-
cation layer protocols; Network measurement; Mobile networks;

Keywords
Multipath TCP; Mobile Web; HTTP/2; Server Push; Cost-Benefit
Analysis

1. INTRODUCTION
Given the increasing popularity of smartphones, the industry and

research community have spent numerous efforts on improving the
performance and quality of experience (QoE) of web browsing on
mobile devices. For example, more than 60% of Alexa top websites
have mobile versions [26]; mobile-friendly browsers are in wide
use on all major platforms [4]; dedicated commercial proxies have
been deployed to reduce mobile data usage [5]; also advanced in-
cloud services have been developed for accelerating mobile web [7,
28]. Most mobile devices have multiple network interfaces, such
as WiFi and cellular, that can be leveraged together to improve
web performance through multipath TCP (MPTCP [15]). MPTCP
transparently splits an end-to-end TCP connection onto multiple in-
terfaces. It stripes data onto subflows at the sender and reassembles
them from each paths at the receiver. MPTCP has already been
implemented in the Linux kernel [24].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AllThingsCellular’16, October 03-07, 2016, New York City, NY, USA
c© 2016 ACM. ISBN 978-1-4503-4249-0/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2980055.2980060

In this paper, we aim to answer an under-explored yet impor-
tant question: should we surf the mobile web using MPTCP all the
time? Multipath on mobile devices has been studied in diverse as-
pects, such as accelerating file download [10, 13] and facilitating
mobility [11]. However, to the best of our knowledge, little work
has been done to understand its interplay with mobile web. We re-
cently conducted a first measurement of mobile web performance
over MPTCP [17]. The key finding is, MPTCP brings more benefits
to SPDY than to HTTP/1.1, due to SPDY’s long-lived multiplexing
connection that uses both paths effectively. However, as we will
show in this paper, the performance gain of MPTCP for HTTP/21

may diminish, e.g., when the page size is small, when the network
characteristics of a path differs significantly from the other, or when
network transfer is not the bottleneck. Thus, blindly enabling mul-
tipath may increase cellular data usage and energy consumption,
while providing no or little QoE improvement to mobile users.

Based on the above insights, we argue that multipath should be
used adaptively, i.e., only when its offered benefits outweigh its
incurred costs. Unfortunately, we found it is fundamentally dif-
ficult to perform the cost-benefit analysis, due to HTTP’s default
“request-response” resource fetching model that iteratively discov-
ers and fetches resources. As a result, at the very beginning of
loading a page, neither the client nor the server has the knowledge
of all contents to be transferred, let alone performing any analysis
based on them.

In order to overcome this limitation, we propose to strategically
use HTTP/2’s server push feature. Server push allows early re-
source discovery and separates network transfer and local compu-
tation, thus making the cost-benefit analysis, a key prerequisite of
adaptive multipath, much easier. We sketch a system design that
makes mobile web over multipath practical by reducing its resource
footprint. We summarize our contributions as follows.

• We conduct experiments in diverse settings to understand the
interplay between multipath and HTTP, as well as the importance
of adaptive multipath (§3).

• We reveal the key challenge of using multipath adaptively for
HTTP’s resource fetching scheme (§4).

• To address the above challenge, we propose a novel server-push
based framework that performs the cost-benefit analysis to intelli-
gently determine when to use multipath, and present a high-level
system design (§4).

2. EXPERIMENTAL SETUP
We set up a multipath testbed consisting of a Linux laptop client

and a server machine, which runs a web server and a proxy. The

1HTTP/2 was developed based on the SPDY protocol.

 http://dx.doi.org/10.1145/2980055.2980060

 0

 2

 4

 6

 8

 10

 12

P
a
g
e
 L

o
a
d
 T

im
e
 (

se
co

n
d
s)

WiFi+HTTP/1.1
LTE+HTTP/1.1

MPTCP+HTTP/1.1
WiFi+HTTP/2
LTE+HTTP/2

MPTCP+HTTP/2

Figure 1: Experiments E1 (left) and E2 (right): PLT of
HTTP/1.1 vs HTTP/2 over single path and multipath. The box
plots show the min, 25-th percentile, median, 75-th percentile,
and the max, across the 24 sites. The open dot is the mean.

laptop communicates with the server using the WiFi (through an
802.11n AP) and LTE (over a cellular carrier) paths simultaneously.
Based on recent measurement studies, we impose additional delay
and bandwidth limit on both paths using Dummynet [8], to emu-
late typical link characteristics experienced by urban residents. For
WiFi, the throughput is 7.0Mbps for downlink and 2.0Mbps for up-
link, and the RTT is 50ms [29]. For LTE, they are 9.2Mbps (down-
link), 2.3Mbps (uplink) and 70ms, respectively [19]. We use this
setup by default, unless otherwise mentioned. The client runs an
off-the-shelf Chrome browser (version 43). Each page is loaded
with cold-cache 100 times for statistically meaningful results. As
we set up our own web server, there is also no in-network caching.
We conduct four types of page loading experiments E1 to E4:
E1. HTTP/1.1 Replay. The client fetches pages from our replay
server (Google Page Replay [1]) that hosts pre-recorded landing
pages of 24 popular websites selected from Alexa top 100 websites.
E2. HTTP/2 Replay. This is similar to E1 except the web pro-
tocol is HTTP/2. Since Google Page Replay does not yet support
HTTP/2, we configure an HTTP/2 proxy (nghttpx 1.0.5 [2]) co-
locating with the replay server. The proxy thus incurs negligible
forwarding overhead.
E3. HTTP/2 Synthetic Page Fetching. The client downloads
synthetic pages with different sizes from the web server (nginx
1.4.6 [3]), using the nghttpx proxy2.
E4. HTTP/2 Server Push. The client loads landing pages of five
mirrored websites from the nginx web server. The nghttpx proxy
uses the server push feature in HTTP/2 to push all resources.

3. WHY ADAPTIVE MULTIPATH?
We study two representative web protocols, HTTP/1.1 and HTTP/2,

over MPTCP. HTTP/1.1 is the de facto protocol used by millions of
web servers today. As the successor of HTTP/1.1, HTTP/2 [6] was
standardized in 2015. It provides new features such as multiplexing
and server push.

3.1 Background: HTTP/1.1 vs. HTTP/2
The left side of Figure 1 compares the page load time (PLT) of

HTTP/1.1 over single-path TCP (SPTCP) and MPTCP. Since WiFi
is usually free (or cheaper than LTE) and incurs less energy foot-

2For E3 and E4, we use a proxy because the support of HTTP/2,
especially for server push, by nginx was still experimental, as of
the time of running the experiments.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2KB 5KB 10KB 50KB 100KB

P
a
g
e
 L

o
a
d
 T

im
e
 (

se
co

n
d
s) SPTCP

MPTCP

Figure 2: Loading small pages over SPTCP and MPTCP (Ex-
periment E3).

print on mobile devices, we select it as the primary path to initiate
MPTCP connections, and use LTE as the secondary one. The re-
sults indicate that MPTCP often does not improve (and may even
hurt) the performance of HTTP/1.1. This is attributed to the fact
that in HTTP/1.1’s paradigm, browsers issue a large number of
short-lived connections, many of which terminate before the sec-
ondary path’s handshake is completed. The chance of using the
secondary path is thus significantly reduced.

We next repeat the experiments for HTTP/2. As shown in the
right side of Figure 1, MPTCP significantly improves the perfor-
mance of HTTP/2, with the average reductions of PLT ranging
from 18.22% to 57.19%, compared to the best single-path PLT
among WiFi and cellular. Unlike HTTP/1.1, HTTP/2 supports mul-
tiple outstanding requests by multiplexing many objects onto a sin-
gle connection, thus creating sufficient opportunities to utilize both
WiFi and cellular paths. In our MPTCP experiments for HTTP/2,
the flow duration increases significantly, making all connections
use the secondary path.

Take-away 1: HTTP/1.1 does not work well with MPTCP, due to
its short flow duration. MPTCP can significantly improve the per-
formance of HTTP/2 which employs long-lived multiplexing con-
nections.

3.2 Does MPTCP Always Help HTTP/2?
The results of HTTP/2 over multipath look promising. However,

one question remains: are these PLT reductions always achiev-
able? In fact, the performance gain of MPTCP diminishes in many
scenarios, for example:

• When the page size is small or a warm-cache loading is per-
formed: In this case, page fetching may finish right after the sec-
ondary subflow is established. Figure 2 shows the results for syn-
thetic pages with sizes from 2KB to 100KB (Experiment E3). As
the page size becomes smaller, the PLT difference between SPTCP
and MPTCP diminishes. Note that prior study shows the median
size of warm-cache loading of a mobile page is around 50KB [26].

• When the secondary path has a higher latency and lower
throughput than the primary: In this case, MPTCP’s default
scheduler routes most packets to the primary path. To verify it,
we repeat E2 by changing the cellular path’s characteristics to em-
ulate a typical 3G link (970 Kbps downlink, 331 Kbps uplink, 160
ms RTT [19]). As shown in Figure 3, MPTCP and SPTCP over
WiFi yield similar performance.

• When network transfer is not the bottleneck: Due to local
computation (e.g., JavaScript evaluation and page rendering) inter-
leaved with network activities, the web page transfer may exhibit

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 7 8

C
D

F

 2 3 4 5 6
Page Load Time (seconds)

MPTCP
WiFi

Figure 3: Repeating E2 with the cellular path emulated as a 3G
link.

an intermittent traffic pattern [31]. In this case, CPU becomes bot-
tleneck, making MPTCP potentially not beneficial since a single
path may already provide sufficient bandwidth. This can happen
more frequently on complex or poorly designed pages.

Take-away 2: HTTP/2’s multiplexing nature makes it outperform
HTTP/1.1 when working over MPTCP. However, MPTCP’s benefits
may diminish due to several factors such as small page size and
poor secondary path.

3.3 Energy Impact of MPTCP
We learn from §3.2 that MPTCP may have limited performance

gain for HTTP/2. Therefore, blindly using multipath causes unnec-
essary cellular data usage and potentially significant energy drain.
Cellular interfaces are a major battery consumer of mobile devices:
3G radio accounts for 1/3 to 1/2 of the overall device energy con-
sumption [27], and LTE consumes at least 50% of the overall en-
ergy [23]. For the experiments of fetching small pages, we use the
recently proposed single- and multipath power models for Sam-
sung Galaxy Note [23] to quantify the radio energy consumption
in Figure 4, by conducting trace-driven simulations. Comparing
Figure 2 and Figure 4, we can see that MPTCP consumes more
energy (5.5x to 7.3x) than SPTCP does, but provides marginal per-
formance improvement, when loading small pages. Note Figure 4
does not include the tail energy that can be significant for cellular
on some devices. We also conduct a simulation for the experiments
of Figure 3, using a 3G UMTS power model [27]. The results in-
dicate that under our configured network conditions (§3.2), using
MPTCP over WiFi and 3G increases the radio energy consumption
by 7.5x on average while providing negligible PLT boost as shown
in Figure 3.

We emphasize that the energy consumption of MPTCP may not
always be higher than SPTCP. When MPTCP significantly reduces
the PLT, making radios stay up for a much shorter period of time,
the overall radio energy consumption may also be reduced. This
further motivates our proposal of adaptively performing multipath
only when MPTCP brings in performance gains.

Take-away 3: Compared to SPTCP, MPTCP may incur addi-
tional radio energy consumption, which will be wasted if it cannot
improve the QoE for mobile web.

4. TOWARD ADAPTIVE MULTIPATH
The above findings suggest we should use multipath adaptively

for mobile web: predicting the costs (additional cellular data usage
and energy consumption) and the benefits (improved QoE), and en-
abling multipath only if the benefits outweigh the costs.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2KB 5KB 10KB 50KB 100KB

N
o
rm

a
liz

e
d
 R

a
d
io

 E
n
e
rg

y SPTCP
MPTCP

Figure 4: Normalized radio energy consumption for loading
small pages (E3).

Unfortunately, conducting such a cost-benefit analysis is very
difficult, if not impossible. Both the costs and benefits are related
to how big the to-be-fetched-objects are, and the order and inter-
leaving of the fetching of these objects. HTTP’s default “request-
response” resource fetching model, which iteratively discovers and
fetches resources, makes it difficult to predict the costs and ben-
efits. As a result, at the beginning of loading a page, neither the
client nor the server has knowledge of all contents to be fetched,
let alone making any prediction based on them. Thus, we believe
changes to the page fetching model are needed to allow early re-
source discovery, and to enable the client or the server to determine
the best content delivery strategy (single- or multipath).

4.1 Leveraging Server Push
We propose to employ server push, a standard feature in HTTP/2 [6],

for the cost-benefit analysis. Server push lets the server proactively
send resources to clients. Compared to the conventional paradigm
of iteratively fetching resources, it offers three benefits:

• Server push reduces the difficulty of predicting the costs of mul-
tipath. The ideal usage scenario of server push is, upon the recep-
tion of an initial page request, the server gathers most (if not all)
resources associated with the page and pushes them in a single bun-
dle to the client. Unlike the conventional iterative resource fetch-
ing, network transfer will ideally never be hindered by local com-
putation. Thus, fetching a web page essentially becomes bulk file
downloading with a known size. Then we can estimate the costs,
i.e., the additional data usage and energy consumption incurred by
the secondary path, through either simulations or theoretical mod-
eling (by extending existing TCP models [9, 25] for MPTCP).

• Server push also makes predicting the benefits of multipath easy,
by separating network transfer and local computation as much as
possible. A recent study [7] indicates that after clicking a link,
mobile users have a typical tolerance limit of 3 to 5 seconds be-
fore most contents of a page are loaded. It suggests that the num-
ber of high-utility resources delivered in the first few seconds is
a good metric for quantifying the QoE for web browsing3. We
therefore use BT

MPTCP −BT
SPTCP to quantify the QoE improvements

brought by MPTCP, where BT
MPTCP and BT

SPTCP are the bytes deliv-
ered by MPTCP and SPTCP, respectively, in the first T seconds (a
pre-defined threshold, e.g., T=3). BT

MPTCP and BT
SPTCP can also be

estimated by simulation or modeling. In contrast, without server

3This assumes the resources are prioritized, which can be achieved
by profiling resources dependencies using approaches proposed in
the literature, either statically [21, 31] or dynamically [7].

 0

 2

 4

 6

 8

 10

 12

 Univ. Retail Gov. Tech. Fashion

P
a
g

e
 L

o
a
d

 T
im

e
 (

se
co

n
d

s) WiFi
LTE

MPTCP

Figure 5: HTTP/2 server push: SPTCP vs. MPTCP (E4).

push, the local computation and network transfer are tightly cou-
pled, leading to potentially intermittent traffic patterns that make
BT

SPTCP and BT
MPTCP much more difficult to estimate.

• Server push also improves cellular energy efficiency, by max-
imizing bandwidth utilization and minimizing the “radio-on-but-
idle” time [12]. Without server push, the potentially intermittent
traffic patterns force the cellular radio to stay at the high-power
state for a longer period.

Realization of the above advantages assumes the majority of re-
sources can be pushed at the beginning of loading a page. In §5.1
we argue this assumption is promisingly valid for most of today’s
web pages.

To demonstrate MPTCP can indeed help server push when trans-
fer size is large, we compare the PLT of server push over SPTCP
and MPTCP using five mirrored landing pages of popular websites
(Experiment E4). For each resource, we add a corresponding LINK
field to the response header of the initial page request, which makes
the resource pushed by nghttpx. Figure 5 clearly indicates that
when server push is enabled, the PLT over MPTCP is around only
half of that over SPTCP. Note that the performance of server push
should be better than non-push due to the reduced network transfer
time (e.g., by up to 45% over cellular networks [16]).

Take-away 4: Server push provides two key features: early re-
source discovery and separation between network transfer and lo-
cal computation. They make it possible to perform cost-benefit
analysis for multipath.

4.2 Sketch of System Design
Based on the above analysis, we present a high-level design of

using multipath adaptively for mobile web.

1. The client sends the initial page request to the server over the
primary WiFi path and describes the cost-benefit policies of multi-
path. A policy can be, for example, multipath should be used only
if at least 200KB data will be transferred. It is derived from the
cost-benefit analysis below. We expect the policy to be very con-
cise (e.g., one line in the HTTP header).

2. The server gathers as many resources associated with the page
as possible, and then pushes them over either SPTCP or MPTCP,
depending on the client’s policy.

3. For the remaining resources that will not be pushed by the
server, the client can either conservatively fetch them over a single
path, or use the same policy as server push. We expect there are
none or not many of such resources, and they incur limited impact
on user’s experience (e.g., they may be advertisements and periodic
background pings).

Current Radio States

Path Characteristics

Radio Power Model

Push Size

Cost

Push Size

Benefit

How many more
bytes can multipath

download in the
first T seconds?

Path Characteristics

Current Radio States

θ1 θ2

Figure 6: Illustration of the proposed cost-benefit analysis.

Next, we describe how to conduct the cost-benefit analysis. As
shown in Figure 6, before sending a page request, the client derives
the cost functions of additional cellular data usage and energy con-
sumption (if any, compared to SPTCP over WiFi). Several factors
affect the costs: both paths’ characteristics (latency, bandwidth,
loss, etc.), the power models of both interfaces, and their current ra-
dio states (turning on the radios costs energy). We can obtain such
information from mobile devices (e.g., RRC states [30] and signal
strength) and by lightweight passive measurement on the client.
The client also derives a benefit function BT

MPTCP − BT
SPTCP, which

is the additional bytes MPTCP can deliver in the first T seconds
compared to SPTCP, under the current network conditions and ra-
dio states (§4.1). With external factors (network conditions, power
models, and radio states) known, the only variable in both the cost
and benefit functions is the size of pushed resources. We exem-
plify an empirically derived model in Figure 7, which visualizes
the percentage of bytes transferred over LTE as a function of WiFi
and LTE latencies, for downloading a 1MB file. The baseline is
our multipath testbed configuration (§2) without any additional la-
tency. X and Y axes are the additional latency added to each path.
Except for few outliers, we see clearly predictable patterns: more
bytes traverse the LTE path as the RTT ratio between WiFi and LTE
becomes larger. Developing detailed methodologies is part of our
ongoing work.

Subsequently, based on the functions and user-specified high-
level requirements, the client generates a compact cost-benefit pol-
icy and embeds it into the initial page request. The simplest policy
consists of a threshold θ1, dictating the server to use multipath only
when the push size is larger than θ1. If the client concerns exces-
sive energy and/or monetary cost, it may send another threshold
θ2, asking the server to limit the cellular data usage. The values of
θ1 and θ2 depend on not only the characteristics of both paths, but
also user’s preference. For example, if the phone is charging and
the user has sufficient quota for her cellular data, a small θ1 and
a large θ2 can be applied. The server will then simply follow the
policy and use multipath accordingly.

We summarize the adaptive nature of our scheme by revisiting
the three scenarios in §3.2, where MPTCP may not be able to im-
prove the performance of mobile web. The small page size and
the poor quality of the secondary path are taken into account by θ1
and θ2, which are dynamically determined based on network con-
ditions. The third one (interleaved computation and data transfer)
is addressed by server push that decouples both factors.

10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

A
dd

’l
LT

E
 L

at
en

cy
 (

m
s)

Add’l WiFi Latency (ms)

Figure 7: Example of an empirical model based on WiFi/LTE
latencies.

5. DISCUSSION
We discuss several practical issues in this section.

5.1 Determining What to Push
Determining what resources to push is a non-trivial task. Pushing

unwanted data incurs bandwidth overhead, while pushing less data
than needed reduces the performance gain. This problem is not
specific to multipath, since server push is a general optimization
approach.

We did not find any literature that provides detailed methods of
how to select the resources to push. We thus give some guidelines
here. First, usually a majority of resources have their URLs em-
bedded in the HTML page (the page itself can be either statically
or dynamically generated). Based on our measurements of popular
sites’ pages, the fraction of bytes of statically embedded resources
ranges from less than 50% to 100%. Second, we can generate the
set of resources requested dynamically by JavaScript without per-
user customization using a simple black-box approach, such as hav-
ing several bots load the same page and taking an intersection of
what they get. Third, the remaining resources are dynamically gen-
erated for a specific client, such as advertisements generated from
a cookie. Usually large objects (e.g., images and fonts) are not
likely to be customized, and we thus expect pushing the resources
described above can already achieve most of the performance gain
for many sites. Finally, the server can obtain the set of resources
already cached by the clients using existing cache synchronization
mechanisms, such as MetaPush [16] and Cache Hints [20]. These
resources will not be pushed. Thus, we believe for websites with-
out substantial per-user customization, most of their resources can
be accurately identified and pushed.

5.2 Working with MPTCP
Our system can use the existing MPTCP protocol implementa-

tion [24] with minor changes.
Secondary Subflow Establishment. In the default MPTCP, shortly

after establishing the primary subflow, the client will start the sec-
ondary subflow. In our case, the client needs to hold off, and wait
for the server to determine whether to establish the secondary sub-
flow. However, this generally useful mechanism, which also allows

the server to manage subflows, is missing in today’s MPTCP. It can
be realized by slightly modifying MPTCP as follows. (1) The client
uses a socket option to inform its MPTCP stack to hold off estab-
lishing the secondary subflow. (2) When establishing the primary
subflow, the client informs the server about its cellular interface’s
address ID through ADD_ADDR. (3) When the server decides to es-
tablish the secondary subflow, it sends MP_JOIN+, a new message
similar to MP_JOIN but including the client’s cellular address ID,
over the primary subflow. Note that directly sending a downlink
MP_JOIN to the client’s cellular interface may not work due to NAT
and firewalls that prevail in today’s cellular networks. Subsequent
secondary subflow handshake remains unchanged.

Congestion Control (CC). When multipath is used in datacenter
networks, due to fairness considerations, subflows’ CC algorithms
are coupled [32]. In mobile world, since WiFi and cellular are het-
erogeneous access networks, their CC can be decoupled (e.g., each
independently runs standard TCP CUBIC) to maximize both paths’
bandwidth utilization [18]. MPTCP also supports decoupled CC.

5.3 Deployment using a MPTCP Proxy
Since most of today’s web servers do not support MPTCP or

use server push, one way to quickly deploy our scheme is to use
a proxy. In this configuration, MPTCP and HTTP/2 server push
are used between the proxy and the client, and regular HTTP/1.1
or non-push HTTP/2 over a single path is used between the proxy
and remote server. Upon the reception of a page request, the proxy
iteratively fetches contents (including parsing JavaScript) on be-
half of the client (which only issues the initial request). Simi-
lar approaches already exist in several cloud-based browsing solu-
tions [4, 28]. The proxy further needs to measure the overall page
size, based on which it decides whether to use multipath or not,
and then pushes the resources to the client accordingly. It may take
time for the proxy to fetch and parse the resources before pushing
them out in a bundle, leading to additional wait time on the client.
We expect these proxies to be computationally powerful, and have
low-latency links to web servers, making the additional delay small.
The issue can be further mitigated by proxy-side caching and other
optimizations.

5.4 Other Issues
System Overhead. In our design, to make the scheme scalable,

all measurements and the cost-benefit analysis are performed on
the client side. One potential concern is its incurred overhead. We
expect it to be low due to several reasons: a client needs to perform
only passive and lightweight measurements; the multipath policy
is very simple; and we can generate the models offline and reuse
them. We plan to thoroughly evaluate the client-side overhead in
our future work.

Policy and primary interface. We have not explicitly consid-
ered the data usage of LTE services, which can be incorporated into
the policies for determining θ1 and θ2 as described in §4.2. Also, in
this study we always use WiFi as the primary interface. Changing
it to cellular may improve the file download time [13]. We leave the
evaluation of its impact on web performance in our future work.

6. RELATED WORK
Mobile Web. Mobile web performance has been extensively in-

vestigated. For instance, Erman et al. [14] measured the perfor-
mance of HTTP and SPDY over cellular networks and studied their
interactions with TCP. PARCEL [28] reduces energy consumption
and page load time for mobile devices through “bundled push”.
Klotski [7] improves the quality of user experience by dynamically
reprioritizing mobile web resources. Flywheel [5] is Google’s data

compression HTTP proxy for the mobile web, which has been a
production system for years. However, none of them studies how
mobile web should perform over multipath.

MPTCP in Mobile Networks. Mobile devices can benefit from
MPTCP for various applications. For file downloading, Chen et
al. [10] and Deng et al. [13] evaluated its performance when using
SPTCP and MPTCP over WiFi and cellular networks. The mo-
bile kibbutz system [22] consolidates cellular traffic from multi-
ple users onto fewer links through MPTCP to improve energy ef-
ficiency. Leveraging MPTCP, Croitoru et al. [11] studied seamless
WiFi mobility among multiple APs. In our recent work [17], we
evaluated the performance of HTTP/1.1 and SPDY over MPTCP.
Partially motivated by the findings, this paper investigates the ques-
tion of when we should use MPTCP for mobile web.

7. CONCLUDING REMARKS
To the best of our knowledge, this is the first proposal of adap-

tively using MPTCP for mobile web. We have found mobile web
does not always benefit from MPTCP, and we argue a cost-benefit
analysis is needed to reduce the resource footprint of MPTCP. Our
proposed cost-benefit analysis is enabled by HTTP/2’s server push
feature. We are implementing this adaptive MPTCP for mobile
web and evaluating its performance. We believe the same lesson
also applies to other mobile applications, such as video streaming.

Acknowledgements
We thank the anonymous reviewers for their helpful feedback. We
thank Vijay Gopalakrishnan for his valuable comments and sugges-
tions. Feng Qian’s research was supported in part by NSF under
CNS-1566331.

8. REFERENCES
[1] Google Web Page Replay Tool.

https://github.com/chromium/web-page-replay.
[2] HTTP/2 C Library and Tools. https://nghttp2.org/.
[3] Nginx: a web and reverse proxy server. http://nginx.org/.
[4] Opera Mini Browser. http://www.opera.com/mobile/mini.
[5] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan,

B. Greenstein, S. McDaniel, M. Piatek, C. Scott, M. Welsh,
and B. Yin. Flywheel: Google’s Data Compression Proxy for
the Mobile Web. In NSDI, 2015.

[6] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer
Protocol Version 2 (HTTP/2). RFC 7540, 2015.

[7] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and
V. Sekar. Klotski: Reprioritizing Web Content to Improve
User Experience on Mobile Devices. In NSDI, 2015.

[8] M. Carbone and L. Rizzo. Dummynet Revisited. ACM
SIGCOMM Computer Communication Review, 40(2):12–20,
Apr. 2010.

[9] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP
Latency. In INFOCOM, 2000.

[10] Y.-C. Chen, Y.-S. Lim, R. J. Gibbens, E. M. Nahum,
R. Khalili, and D. Towsley. A Measurement-based Study of
MultiPath TCP Performance over Wireless Networks. In
IMC, 2013.

[11] A. Croitoru, D. Niculescu, and C. Raiciu. Towards WiFi
Mobility without Fast Handover. In NSDI, 2015.

[12] S. Deng and H. Balakrishnan. Traffic-Aware Techniques to
Reduce 3G/LTE Wireless Energy Consumption. In CoNEXT,
2012.

[13] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan.
WiFi, LTE, or Both? Measuring Multi-homed Wireless
Internet Performance. In IMC, 2014.

[14] J. Erman, V. Gopalakrishnan, R. Jana, and K. Ramakrishnan.
Towards a SPDY’ier Mobile Web? In CoNEXT, 2013.

[15] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP
Extensions for Multipath Operation with Multiple
Addresses. RFC 6824, 2013.

[16] B. Han, S. Hao, and F. Qian. MetaPush: Cellular-Friendly
Server Push For HTTP/2. In All Things Cellular Workshop,
2015.

[17] B. Han, F. Qian, S. Hao, and L. Ji. An Anatomy of Mobile
Web Performance over Multipath TCP (Short Paper). In
CoNEXT, 2015.

[18] H.-Y. Hsieh and R. Sivakumar. A Transport Layer Approach
for Achieving Aggregate Bandwidths on Multi-homed
Mobile Hosts. In MobiCom, 2002.

[19] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao,
S. Sen, and O. Spatscheck. An In-depth Study of LTE: Effect
of Network Protocol and Application Behavior on
Performance. In SIGCOMM, 2013.

[20] J. Khalid, S. Agarwal, A. Akella, and J. Padhye. Improving
the performance of SPDY for mobile devices. In HotMobile
(Poster Session), 2015.

[21] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M.
Wang. WebProphet: Automating Performance Prediction for
Web Services. In NSDI, 2010.

[22] C. Nicutar, D. Niculescu, and C. Raiciu. Using Cooperation
for Low Power Low Latency Cellular Connectivity. In
CoNEXT, 2014.

[23] A. Nika, Y. Zhu, N. Ding, A. Jindal, Y. C. Hu, X. Zhou, B. Y.
Zhao, and H. Zheng. Energy and Performance of Smartphone
Radio Bundling in Outdoor Environments. In WWW, 2015.

[24] C. Paasch, S. Barré, et al. Multipath TCP in the Linux
Kernel. http://www.multipath-tcp.org.

[25] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP Throughput: A Simple Model and its Empirical
Validation. In SIGCOMM, 1998.

[26] F. Qian, S. Sen, and O. Spatscheck. Characterizing Resource
Usage for Mobile Web Browsing. In MobiSys, 2014.

[27] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Profiling Resource Usage for Mobile
Applications: a Cross-layer Approach. In Mobisys, 2011.

[28] A. Sivakumar, S. P. Narayanan, V. Gopalakrishnan, S. Lee,
S. Rao, and S. Sen. PARCEL: Proxy Assisted BRowsing in
Cellular networks for Energy and Latency reduction. In
CoNEXT, 2014.

[29] J. Sommers and P. Barford. Cell vs. WiFi: On the
Performance of Metro Area Mobile Connections. In IMC,
2012.

[30] N. Vallina-Rodriguez, A. Aucinas, M. Almeida,
Y. Grunenberger, K. Papagiannaki, and J. Crowcroft.
RILAnalyzer: a Comprehensive 3G Monitor On Your Phone.
In IMC, 2013.

[31] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall. Demystifying Page Load Performance with
WProf. In NSDI, 2013.

[32] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley.
Design, Implementation and Evaluation of Congestion
Control for Multipath TCP. In NSDI, 2011.

https://github.com/chromium/web-page-replay
https://nghttp2.org/
http://nginx.org/
http://www.opera.com/mobile/mini
http://www.multipath-tcp.org

	Introduction
	Experimental Setup
	Why Adaptive Multipath?
	Background: HTTP/1.1 vs. HTTP/2
	Does MPTCP Always Help HTTP/2?
	Energy Impact of MPTCP

	Toward Adaptive Multipath
	Leveraging Server Push
	Sketch of System Design

	Discussion
	Determining What to Push
	Working with MPTCP
	Deployment using a MPTCP Proxy
	Other Issues

	Related Work
	Concluding Remarks
	References

