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Robust Saliency-Driven Quality Adaptation
for Mobile 360-Degree Video Streaming

Shibo Wang , Shusen Yang , Senior Member, IEEE, Hairong Su, Cong Zhao , Chenren Xu ,
Feng Qian, Member, IEEE, Nanbin Wang, and Zongben Xu

Abstract—Mobile 360-degree video streaming has grown signif-
icantly in popularity but the quality of experience (QoE) suffers
from insufficient and variable wireless network bandwidth. Re-
cently, saliency-driven 360-degree streaming overcomes the buffer
size limitation of head movement trajectory (HMT)-driven solu-
tions and thus strikes a better balance between video quality and
rebuffering. However, inaccurate network estimations and intrinsic
saliency bias still challenge saliency-based streaming approaches,
limiting further QoE improvement. To address these challenges,
we design a robust saliency-driven quality adaptation algorithm
for 360-degree video streaming, RoSal360. Specifically, we present
a practical, tile-size-aware deep neural network (DNN) model
with a decoupled self-attention architecture to accurately and
efficiently predict the transmission time of video tiles. Moreover,
we design a reinforcement learning (RL)-driven online correction
algorithm to robustly compensate the improper quality allocations
due to saliency bias. Through extensive prototype evaluations over
real wireless network environments including commodity WiFi,
4 G/LTE, and 5 G links in the wild, RoSal360 significantly enhances
the video quality and reduces the rebuffering ratio, thereby improv-
ing the viewer QoE, compared to the state-of-the-art algorithms.

Index Terms—Quality adaptation, saliency, network estimation,
360-degree video streaming.

I. INTRODUCTION

THE virtual reality (VR) market was valued at USD 15.81
billion in 2020 and is expected to grow at an annual growth

rate of 18.0% from 2021 to 2028 [1]. As one of the most
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potential VR applications, mobile 360-degree video streaming,
i.e., viewing 360-degree video streams on untethered mobile
VR headsets, has experienced a considerable increase in popu-
larity [2], [3], [4], [5]. However, insufficient and fluctuant wire-
less network bandwidth limits the quality of experience (QoE).
First, the delivery of high-definition 360-degree videos can not
be fully supported by the current wireless network capacity.
A 4K-resolution 360-degree video demands at least 25 Mbps
bandwidth [6], while the LTE speeds are only 5-12 Mbps in many
regions [7]. Second, mobile 360-degree video streaming would
suffer from unexpected rebuffering due to highly variable wire-
less network bandwidth [8]. Either low-definition VR display
or rebuffering would severely degrade the QoE for mobile VR
viewers, such as disorientation and nausea [9]. Thus, enhancing
the QoE of mobile 360-degree video streaming under limited,
dynamic wireless network bandwidth is critical and urgent.

The majority of previous research adopts head movement
trajectory (HMT)-driven optimization methods [10], [11], [12],
[13], [14], [15]. A basic assumption underlying their approaches
is that the HMT of a viewer has a strong temporal correlation,
which means that the future HMT can be accurately predicted
by the historical HMT alone during the playback. However,
this temporal correlation would not always be strong enough
to achieve accurate HMT predictions, which would severely
degrade the QoE in the HMT-driven solutions [10]. Moreover,
since the prediction horizon of HMT has to exceed the buffer
occupancy on the client player, the HMT-driven approaches are
obliged to set a small buffer size (i.e., maximum buffer length)
to reduce prediction horizons due to less correlation with the
longer interval. The scarce buffer would lead to a high risk of
rebuffering, especially under highly dynamic wireless network
environments.

Recently, the introduction of saliency information [16], [17],
[18] provides a new favorable 360-degree video streaming
framework to address the limitations caused by temporal-
correlation-dependent HMT predictions. Saliency-based meth-
ods acquire the saliency maps from historical viewing data (e.g.,
gaze data) or video content offline, and tend to allocate high
quality levels to high-salient regions during playback. Saliency
provides content-aware prior information for long-term viewer
attention estimations, free from online HMT data, and thus
achieve a better trade-off between video quality and rebuffering.
However, saliency-driven quality adaptation still suffers from in-
accurate network estimations and saliency bias, limiting further
QoE improvement for mobile 360-degree video streaming.
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Most existing 360-degree video quality adaptation schemes
[10], [11], [17] adopt plausible but under-designed bandwidth
estimation methods (e.g., the harmonic mean of past five sam-
ples). These methods fail to achieve the satisfactory estimation
accuracy in the wild especially in wireless network environ-
ments, which degrades the QoE of mobile 360-degree video
streaming. Recently, emerging deep neural network (DNN)-
driven transmission time prediction (TTP) algorithms [19] con-
sider the effects of chunk sizes on throughputs that the user
actually experiences, and make revolutionary progress in term
of TTP accuracy and corresponding QoE. However, these algo-
rithms are designed for conventional non-tiled video streaming
and are hardly practical for 360-degree video streaming due to
tile-based delivery.

Moreover, the saliency maps are determined by collective
preferences using the offline collected historical viewing data,
without considering the individual preference of new viewers.
Inevitable saliency bias would influence the QoE of outlier view-
ers. For instance, a viewer that prefers to gaze at collectively-
determined non-salient regions would perceive weak QoE due
to the quality adaptation using saliency alone (the less salient the
lower allocated quality). The prior work [17] tries to compensate
the adverse effects induced by saliency bias using a heuristic
online correction mechanism, that is, redownloading improper
in-buffer video tiles. However, in the prior work, whether a tile is
proper is judged based on the HMT-driven viewport prediction,
the methods of which per se are not always credible enough to
support an accurate proper-or-not judgment. In addition, existing
correction schemes suffer from the risk of overdue tile redown-
loading especially considering the still imperfect TTP outcomes,
which would waste network resources and even cause inferior
QoE performances compared to a streaming system without the
correction mechanism.

To address above challenges and enhance the QoE, we present
a robust saliency-driven 360-degree video quality adaptation
algorithm, RoSal360. We present a practical, tile-size-aware
TTP algorithm for tile-based video transmission. Specifically,
we design a self-attention-based DNN model to effectively
and efficiently predict the transmission time of each tile by
decoupling the network tendency estimation and the effects
of tile sizes. Moreover, we present a reinforcement learning
(RL)-driven online correction algorithm combining the online
estimated credibility of both viewport predictions and network
predictions, to reduce the disadvantages caused by saliency
bias.

We constructed a gaze-annotated 360-degree video dataset
using untethered VR headsets with the built-in eye-tracking
device, based on 30 volunteers and 23 various long 360-degree
videos. We implemented a prototype of RoSal360 and conducted
large-scale evaluations over real-world wireless network envi-
ronments including commodity WiFi, 4 G/LTE, and 5 G links
in the wild. The evaluation on real viewing datasets, consist-
ing of more than two hundred hours of playback, shows that
RoSal360 achieves an up to 4.57 dB improvement in gaze-driven
Peak-Signal-to-Noise-Ratio (PSNR) and reduces the rebuffering
ratio by up to 4.11×, thereby significantly enhancing the QoE of
viewers, compared to the state-of-the-art approaches. All user

studies in our work were IRB approved without raising any
ethical issues.

In summary, our key contributions are as follows:
� We present RoSal360, a robust, integrated saliency-driven

quality adaptation algorithm designed for mobile 360-
degree video streaming.

� We design a practical, efficient, and tile-size-aware trans-
mission time prediction algorithm based on an attention-
based DNN model with a novel decoupled architecture.

� We design a RL-driven online correction algorithm com-
bining the prediction credibility of both viewer behaviors
and network conditions, to reduce the adverse effects of
saliency bias.

� By extensive prototype experiments using gaze-annotated
360-degree video datasets on various real wireless net-
works, we demonstrate that RoSal360 achieves significant
improvements on video quality, rebuffering, and viewer
QoE over current schemes.

Additional Novelties. The previous work, SalientVR [17] (i.e.,
the conference version of this manuscript), mainly focuses three
key challenges in the design of saliency-driven 360-degree video
streaming system, i.e., saliency groundtruth judgment, saliency
map acquirement, and the saliency-aware quality adaptation. In
contrast, this manuscript (i.e., RoSal360) further addresses the
new challenges of saliency-based solutions, i.e., tile-level trans-
mission time prediction and online correction, for the robustness
to network variation and sailency bias, which are not considered
or handled with minimal efforts only by SalientVR.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the background and motivations. Section III
formulates the tile-level 360-degree video quality adaptation
problem with an explicit consideration about the tile’s transmis-
sion time. Section IV presents the overview of the RoSal360
system. Section V proposes the core design of RoSal360,
the robust saliency-driven quality adaptation algorothm. Sec-
tion VI introduces the prototype implementation. Section VII
evaluates the performances of RoSal360 over real wireless
networks. Section VIII states the limitation and discussion.
Section IX describes the related work. Finally, we conclude
in Section X.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the background of mo-
bile 360-degree video streaming and the limitations of exist-
ing optimization methods. Then, we expound the advantages
and remaining defects of saliency-driven quality adaptation for
360-degree videos.

A. Mobile 360-Degree Video Streaming

Untethered mobile VR headsets enable viewers to enjoy mo-
bile 360-degree video streaming without wired hindrance, but
suffer from insufficient wireless network bandwidth. Inspired
by the fact that human view is restricted, past works mainly
adopt the HMT-driven approaches [10], [12], [13], [14]. They
split each video chunk spatially into multiple tiles (e.g., 4× 6
grids), as illustrated in Fig. 1, and encode each tile with different
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Fig. 1. Viewport, gaze region, chunk, and tiles. Gaze region is a small
percentage region of viewport with high visual acuity (more details in [17]).
A video chunk is segmented into Nrow ×Ncol tiles (4× 6 in this example).
A tile has the same duration and frame number as the corresponding chunk, but
occupies only a small part of spatial region.

quality levels, such as quantization parameters (QP). During the
playback, they constantly predict the future HMT in the next 1-3
seconds according to the recently historical HMT using linear
regression (LR)-based or DNN-based methods [10], [11]. Based
on the predicted HMT, they assess the importance of each tile
of the next chunk and assign the higher qualities to the more
important tiles.

However, these HMT-driven solutions overly rely on the
temporal correlation of HMT, leading to two shortcomings. First,
the future HMT is scarcely correlated with the historical HMT in
some cases even with a short prediction horizon (a.k.a, prediction
window or pw) [17]. For mobile VR viewers, the untethered
freedom further reduces this temporal correlation. Second, the
HMT-driven approaches are highly sensitive to the size of pw
due to rapid correlation decrease as the time interval increases.
Even three seconds ofpw degrades the HMT prediction accuracy
into 35.2% [10]. Due to the prefetching feature of on-demand
video streaming, pw has to exceed the buffer occupancy during
the playback. Therefore, these approaches set a very small
buffer size to shorten pw in practice, but suffer from frequent
rebuffering especially over variable wireless network conditions.

B. Saliency-Driven Quality Adaptation

Saliency [18], [20] is a term in computer vision literature,
representing the property of grabbing attention for an object or
a region. Recently, inspired by the fact that viewing behaviors
of humans are remarkably correlated with the saliency of pix-
els [18], [20], [21], several works explore the saliency-driven
360-degree video streaming solutions for viewer QoE improve-
ment [16], [17]. These approaches utilize the collected viewing
data (e.g., gaze data) to acquire the saliency map (illustrated
in Fig. 2) of each chunk based on cross-user viewing behavior
similarity or DNN-driven video content analysis. Then, they
give priority to high-salient video tiles and keep a longish buffer
size. The saliency maps acquired offline provide human-centric
prior information for accurate long-term attention estimations
without depending on the online HMT data. Therefore, the
saliency-based framework gets rid of the limitations of temporal
correlation and achieves a better trade-off between video quality

Fig. 2. A tile-level saliency map is a numerical matrix with the same dimension
as the tile segmentation. The matrix entries are saliency scores of different tiles
in a video chunk, representing the saliency degrees of different tile regions.

and rebuffering. Despite great progress of saliency-based solu-
tions, there are several drawbacks in existing saliency-driven
quality adaptation approaches, hampering the further QoE
enhancement.

First, mobile 360-degree video streaming still suffers from
the inaccurate TTP (i.e., transmission time prediction), which
plays a fundamentally important role in quality adaptation. An
underestimated network condition would incur a low bandwidth
utilization and on the other hand, an overestimated bandwidth
would increase the risk of buffer exhaustion. Most of previ-
ous efforts adopt the intuitive but under-designed bandwidth
estimation algorithms (e.g., the harmonic mean of past five
samples), which are not accurate and robust enough to sup-
port a decent quality allocation. For conventional DASH-based
video streaming, several works [19] present the chunk-size-
aware, one-stage, and DNN-assisted TTP algorithms, which
show promising potential for the accurate TTP. In contrast to
two-stage TTP frameworks, i.e., predicting the bandwidth and
then using the ratio of sizes to estimated bandwidth as TTP
results, one-stage TTP algorithms consider the effects of chunk
sizes on actual throughputs, and predict the transmission time
straightforward. However, these TTP methods are inefficient
even impractical for tile-based video streaming, where all tiles
are independently transmitted. Due to the introduction of tile
sizes as model input, each tile has to be separately inferred
to output the TTP result. For example, 5× 24 = 120 rounds
of forward propagation in neural networks are required for
five optional quality levels and 4× 6 tile segmentation every
chunk, which is inefficient in practice. Therefore, we decou-
ple the network tendency prediction and the effects of tile
sizes on throughputs, and put forward to an efficient, prac-
tical TTP algorithm based on a novel attention-based DNN
architecture.

Second, the saliency maps are prepared offline and are deter-
mined by collective preferences without considering individual
users. Inevitable saliency bias may result in poor experiences
for few individual users with distinctive attention preferences,
i.e., outlier viewers. For instance, a viewer that prefers to gaze
at collectively-determined non-salient regions would perceive
weak QoE due to the quality adaptation using saliency alone
(the less salient the lower allocated quality). Therefore, an
online correction mechanism is crucial in saliency-driven quality
adaptation for robustness to saliency bias. Prior work [17] pro-
poses a heuristic correction scheme to redownload the improper
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buffer-in video tiles. However, whether an already downloaded
tile possesses the proper quality level is judged by HMT-driven
viewport predictions, which per se are not always reliable.
Moreover, the redownloaded tiles will be useless for playback
and wasteful of network resources if they fail to arrive before
the time they ought to be displayed, which would even cause
inferior QoE performances over the streaming system without
correction mechanisms. The inaccurate TTP further increases
the risk of the overdue tile redownloading. Therefore, to further
reduce the negative influence induced by saliency bias, we
propose a RL-driven online correction algorithm combining the
credibility of viewing behavior predictions, buffer occupancy,
and estimated network variations.

III. PROBLEM STATEMENT

Tile-level 360-degree video quality adaptation, i.e., deciding
which quality level to be allocated to each tile, can be formulated
as a QoE maximization problem

max
li(j)

1

N
QoEN

1 , li(j) ∈ Ω, (1)

where QoEN
i is the QoE of video chunk 1 through N , li(j) is

the quality level (e.g., QP value) of tile j of chunk i, and Ω
is the optional set of quality levels. The QoE is constituted by
four components, i.e., average quality, temporal quality varia-
tion, spatial quality variation, and rebuffering time, defined as
follows:

QoEN
1 =

N∑
i=1

q(li,vi)− μ1 ×
N−1∑
i=1

|q(li+1,vi+1)− q(li,vi)|

− μ2 ×
N∑
i=1

StdDev(li,vi)− μ3 ×Rebuf_T ime.

(2)

Here, q(li,vi) is the quality (e.g., PSNR) of chunk i, vi is the
viewing behavior including head directions and gaze points in
chunk i, and μs are non-negative weighting parameters. Differ-
ent from conventional video, the assessment indexes related to
quality should be built upon the viewing behaviors of users for
360-degree video streaming. For example, the region except the
viewport is unseen for users, thus the quality in which makes
no difference on viewer QoE. The specific and detailed video
quality assessment (VQA) method for mobile 360-degree video
streaming can refer to the prior work [17]. Moreover, the spatial
quality variation, i.e., the tile-across quality variation in one
chunk, is a unique evaluation metric for tile-based video delivery.
Actually, the unevenly spatial quality distribution would also
result in chunk-in temporal quality variation due to the changes
of viewer behaviors during one chunk, which is not considered
here for simplicity.

Let Bt ∈ [0, Bmax] be the buffer occupancy (in seconds) at
time t, i.e., the length of the video left in the buffer, and di(t)(j)
be the transmission time of tile j of the to-be-downloaded chunk
i at time t. Further, let δt be the time cost of solving a tile-level
quality allocation problem for the to-be-downloaded chunk at

Fig. 3. Overview of the RoSal360 system.

time t. Then the player’s buffer dynamics can be formulated as

Btk+1
=

⎛
⎝Btk − δtk −

∑
j

di(tk)(j)

⎞
⎠

+

+ L, (3)

where L is the duration of a chunk, and the notation (x)+ =
max{x, 0} ensures that the buffer occupancy is non-negative.
Compared to chunk-level adaptation, the combinatorial space
of the tile-level quality allocation problem is far larger, e.g., 524

combos in one chunk for 4× 6 tiling and five quality levels.
Hence, δt is non-negligible for crude solving solutions (e.g.,
exhaustive search) in tile-level adaptation especially considering
the limited computing resources on mobile devices. Note that
due to the limitation of the buffer size Bmax, when the buffer is
full, the fetcher in the player waits for the buffer occupancy to
be consumed until a new chunk can be appended. The waiting
time Δtk can be expressd as follows:

Δtk =

⎛
⎝
⎛
⎝Btk − δtk −

∑
j

di(tk)(j)

⎞
⎠

+

+ L−Bmax

⎞
⎠

+

,

(4)

IV. OVERVIEW OF ROSAL360

Fig. 3 illustrates a overview of RoSal360 system that in-
cludes the offline saliency map preparation phase and the online
saliency-aware video streaming phase.

Saliency Map Preparation. When a 360-degree video is up-
loaded, the media server transcodes and dashifies the video
into multiple-bitrate chunks, and then splits each chunk into
Nrow ×Ncol equal-sized tiles, on top of the DASH standard.
Next, the saliency map (i.e., the Nrow ×Ncol numerical matrix)
of each chunk is generated offline on the server based on video
content and collected viewing data (refers to [17] for more
details about the saliency map acquirement). Finally, the saliency
maps are packaged in JSON format for ease of transmission and
deployment.

Saliency-Aware Video Streaming. At the beginning of video
streaming, the corresponding saliency maps are downloaded to
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Fig. 4. A causal diagram regarding the tiles’ transmission times. The arrows
represent the directional causal relationships between two connected variables.

the client first. During the playback, the tile-size-aware trans-
mission time predictor (Section V-A) estimates the transmission
time of video tiles with diverse quality levels in the next chunk.
Then, referring to saliency maps, the saliency-weighted reward
calculator (Section V-B) computes the QoE rewards of all
quality combos combining the TTP results and the buffer oc-
cupancy to decide the quality allocation (i.e., download plan) of
video streaming. Simultaneously, the RL-driven online corrector
(Section V-C) utilizes the online viewing data to correct the
unfrequent but improper quality allocations caused by saliency
bias. According to the download plan, the videos tiles with
the corresponding quality levels are fetched, decoded, merged,
projected, and displayed by the client player.

V. SALIENCY-DRIVEN QUALITY ADAPTATION

We propose RoSal360, a robust saliency-driven quality adap-
tation framework for mobile 360-degree video streaming. We
first design a tile-size-aware, attention-based DNN architecture
to predict the transmission time of video tiles. Based on the
saliency map and TTP results, we model and solve the saliency-
weighted reward maximization problem with a transmission
time constraint. Further, we design a RL-based online correction
algorithm to correct improper quality allocations caused by
saliency bias.

A. Attention-Based Tile-Size-Aware TTP

Based on the self-attention mechanism in the machine learn-
ing domain [22], we design a practical tile-size-aware TTP
neural network model that decouples the network condition
prediction and the effects of tile sizes on transmission times.
Fig. 4 shows a causal diagram concerning the related network
variables to aid in visualizing how these variables are causally
interrelated. The future network conditions and the size of the
next to-be-fetched tile jointly determines the transmission time
of this tile. Further, the network conditions are influenced by
the traffic behaviors of all senders (including ours) that share
this identical network link. Given the network resources, all
senders compete for bandwidth. If other senders occupy more
bandwidth, the actual rate experienced by our sender will be
lower and the network condition seems to get worse. Certainly,
the behaviors of different senders are interactional especially
for elastic flows with fairness-enhanced rate control. It means
that our sending rate would affect the others’ behaviors and
further affect the network condition. However, the influence
of our sender on network conditions tends to be insignificant
compared to lots of other senders although other users’ behaviors

Fig. 5. The basic DNN model architecture of our TTP algorithm. It decouples
the prediction of unbiased network tendency and the effects of tile sizes on
observed throughputs.

Fig. 6. Final output of our TTP model: an estimated probability distribution
of transmission times.

are unknowable to us. Therefore, we overlook the effects of tile
sizes on dominating network tendency (denoted by the dashed
arrow in Fig. 4), and present a novel and practical DNN design
by decoupling the effects of network conditions and tile sizes on
transmission times.

Basic Model Architecture. Fig. 5 depicts the DNN model
architecture of our TTP algorithm. We take the T recently
historical (tile throughput, tile size) pairs as model input.
The tile throughputs observed by users are actually influenced
by the sizes of downloaded tiles, that is, these throughput values
are size-biased. Thus, we first uses a fully-connected (FC)
neural network layer to counteract the throughput biases due
to the different tile sizes of data pairs, and output the unbiased
throughputs. The unbiased throughputs can be regarded as the
throughputs observed by hypothetically transmitting the same-
size tiles. Then, we use a FC layer followed by the attention-
based neural network module (detailed later) to predict the future
network tendency variation and output the estimation of the
unbiased throughput at time t. Finally, we combine the predicted
unbiased throughput and the size of the next to-be-fetched
tile to predict the size-biased transmission time of the next
tile.

Specific Algorithms. The first FC layer in our model under-
takes the bias correction, where the weights of all FC models
are shared although the input pairs are separated to be processed
by the corresponding independent FC model. Actually, every
FC model in the first layer generates a vector representing the
unbiased throughput instead of a single value. Similar as [19],
our TTP model finally outputs a probability distribution Ŷ
on possible transmission times rather than a single predicted
value, illuminated in Fig. 6 Here, Ŷt = [ŷ0t , ŷ

1
t , . . . , ŷ

Nout
t ] is

the distribution estimation of transmission times at time t, given
the tile size. ŷit is the probability value of the transmission
time belonging to the corresponding ith interval, which satisfies∑Nout

i=0 ŷit = 1. In practice, we take the median value of an
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Fig. 7. The attention module of our TTP model.

interval as the transmission time this interval stands for, and
compute the expectation value of the output distribution as the
estimated transmission time

d̂t =

Nout∑
i=0

ŷit ×
ai + ai+1

2
, (5)

where d̂t is the estimation of transmission times, and a0 = 0.
The attention module in our model is similar as the encoder

stack of Transformer [22], which includes the Natten blocks
of multi-head self-attention layers and position-wise FC lay-
ers, as shown in Fig. 7. The Transformer is a well-known
attention-based DNN architecture in the artificial intelligence
(AI) domain due to its revolutionary progresses in various ap-
plication areas. Given the time series of position-encoded input
X = [x1, x2, . . . , xT ], the queries, keys, and values are packed
together into matrices Q, K, and V, respectively, computed as
follows:

Q = WQXT , K = WKXT , V = WVXT , (6)

where WQ,WK,WV are learnable weight matrices and XT

means the transpose of X (not the time T defined before).
Afterwards, the output of the multi-head self-attention layer is
computed as follows: (refers to [22] for more details)

Attention(Q,K,V) = softmax

(
QKT√
dkey

)
V, (7)

where dkey is the dimension of keys (also the dimension of
queries). Then, the position-wise FC layer takes the concatena-
tion of outputs from all heads as input and outputs the estimation
of the future unbiased throughput.

Model Training. We extract two hundred million pairs of
real-world network data from Puffer [19] to pre-train our TTP
model. Puffer is a free, publicly accessible video streaming
service platform that streams commercial television channels
through multiple types of network. During the streaming, Puffer
constantly records the transmission times of chunks and the cor-
responding chunk sizes. Based on the pre-trained model weights,
we fine-tune our TTP model on a new tile-wise transmission
time dataset (over a million pairs of data) that we collected in
real network environments. We implemented and deployed the
tile-level 360-degree video streaming platforms on five different

Fig. 8. The second part of the loss function we set in the TTP model training
(i.e., LossFirstLayer). The output of the first FC layer is a training-specific
ouput for self-supervised bias transformation learning.

cloud servers (will be introduced in Section VI). Multiple clients
constantly downloaded the video tiles day and night with a
Random ABR algorithm, i.e., the quality level of each tile is
randomly selected form the five ascending levels. Different from
Puffer in which the collected data are ABR-related due to its
evaluation purpose, we adopt a randomly-allocated quality adap-
tation scheme during the data collection for a larger exploration
space and more dissimilar size trajectories of downloaded tiles.

The groundtruth of downloading time is represented as a one-
hot vector in which the item corresponding to the time interval
the actual downloading time belongs to is one and the others are
zero. The loss function in training is constituted by two parts,
expressed as follows:

Losstrain = LossCE + LossFirstLayer. (8)

The first part is the cross-entropy (CE) loss between the esti-
mated transmission time distribution (i.e., the final output of our
TTP model) and the discretized actual downloading time (i.e.,
the groundtruth represented by a one-hot vector). The second
part is the loss set for the supervision of bias transformation.
After a forward propagation of our TTP model, naturally, we
can obtain a model-dependent triad formed by the unbiased
throughput, the tile size, and the size-biased throughput at time
t, where the biased throughput is the size divided by the corre-
sponding transmission time prediction (generated by the last FC
layer) rather than the groundtruth value. We expect the first FC
layer in our model to learn to handle the size bias and yield the
unbiased throughput, i.e., making biased-to-unbiased transfor-
mation, which can be interpreted as the inverse transformation of
the last FC layer. Ideally, the transformation (by the first layer)
of the transformation (by the last layer) of UT (t) should be
UT (t)s itself, where UT (t) denotes the unbiased throughput
at time t, i.e., the output of the attention module. Therefore,
the aforementioned triad provides a group of self-supervised
training data for improving the bias transformation of both the
first and last FC layer. To this end, as shown in Fig. 8, the second
part of the loss function is the difference of UT (t), and the
training-specific output from the first FC layer by inputting the
predicted biased throughput and the size at time t.

Practical Designs. The decoupled design enables the TTP
model to efficiently infer the transmission times for a number
of tiles at some point in time, with the forward propagation of
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the neural network only once except the last FC layer. Only the
last FC layer repeats network inferences, ingesting the identical
unbiased throughput prediction value and the diverse tile sizes
to output these tiles’ TTP outcomes. It significantly reduces the
time cost of quality adaptation per chunk. To further lower the
overhead of quality adaptation, we also perform the clustering
analysis for the size values of all tiles with different quality
levels in each chunk offline, and only infer the transmission
time of cluster centers during streaming. Let d̂i(j), d̂(cci(j)) be
the estimated transmission times of tile j of chunk i and the size
center of the cluster that tile j belongs to, respectively. Then, we
compute the TTP result of tile j as follows:

d̂i(j) = d̂ (cci(j))× Sizei(j) / Size (cci(j)) , (9)

which is due to the nearly equal effects of size bias on through-
puts with the similar sizes. Moreover, in practice, we regard the
dispersion of the TTP distribution as a measure of the uncertainty
degree for future network states. If the dispersion is high, we
multiply the final TTP result by a corresponding discounting
coefficient (means more conservative TTP) for robustness to
network variations.

B. Saliency-Weighted Reward Maximization

Based on saliency maps and TTP results, we convert the
quality adaptation problem to a constrained, saliency-weighted
reward maximization problem. Then we design a fast solution
scheme using the simulated annealing optimization method to
compute the optimal quality allocation decisions.

Modeling the Reward Maximization Problem. The saliency
map implies the probability of gazing at each tile for a new user.
Thus, the tiles with larger saliency scores tend to be delivered
in higher quality. We also set a minimum buffer threshold, γ,
to reduce the risk of rebuffering. Specifically, we convert the
quality adaptation problem for the to-be-downloaded chunk i as
a constrained, saliency-weighted reward maximization problem
as follows:

max
li(j)

rewardi =
∑
j

Sali(j)× F (li(j))

− λ1

∑
j

Sali(j)× Sali−1(j)× |F (li(j))− F (li−1(j))|

− λ2

∑
j

∑
r∈nei(j)

|F (li(j))− F (li(r))| × Sali(j)

|nei(j)| ,

s.t. Bt(i) −
∑
j

di(j) > γ, (10)

where Sali(j) is the saliency score of tile j in the saliency
map of chunk i, nei(j) is the indexes of the neighbor-
ing tiles of tile j, and λs are non-negative weighting
parameters.

Here, the first item of the reward we set is the saliency-
weighted average video quality of chunk i. F (·) is a function
mapping the quality level (e.g., the QP value or zero to five)
to an another indicator that is positively related to the actual
video quality, e.g., an inversely correlated function of QP values.

We used F (QP ) = 60− 0.8×QP in RoSal360, which refers
to [10], [23], [24]. We used F (·) rather than using the actual
video quality q(·) straightforward due to the computing com-
plexity of q(·). The second and third items of the reward repre-
sent the chunk i ’s saliency-weighted average quality differences
between two consecutive chunks, and between neighboring tiles
in an identical chunk, respectively. To facilitate computation,
we only compute the quality difference of same-position tiles
of two successive chunks, although the quality difference of
diverse-position tiles of two successive chunks may influence
the QoE due to the cross-tile gaze movement in the junction
of two chunks. In practice, computing the diverse-position dif-
ferences gains little but increases the computation complexity
by tens of times. Overall, this setting rewards the increase
in saliency-weighted video quality, and penalizes the increase
in saliency-weighted quality variance both temporally and
spatially.

Saliency-driven quality adaptation design dramatically re-
duces the reliance on HMT predictions by viewport-free reward
computation. Therefore, RoSal360 enables the client player
to keep a longish buffer to absorb network variations without
worrying about the diminution in HMT’s temporal correlation.
Inspired by [8], we set a minimum threshold of the buffer occu-
pancy, γ, which means that the buffer occupancy should always
exceed γ during video downloading. Specifically, a transmission
time constraint is added in Eq. (10). If there is no quality combo
satisfying the transmission time constraint, RoSal360 will adopt
the most conservative quality allocation scheme, i.e., fetching all
tiles in the lowest (highest if using QP) quality levels, to expand
buffer as best it can.

Fast Problem Solving Using Simulated Annealing. Huge
search space of tile-level adaptation would incur the consid-
erable calculation delay for exhaustive search, which would
severely impair adaptation performances. Thus, we adopt two
techniques to reduce the search space and speed up computa-
tion. First, a monotonicity constraint is added that the quality
level of each tile never increases (reduces if using QP) as
the saliency score drops off. Second, the simulated annealing
optimization algorithm [25], [26] is delicately applied to speed
up searching for the optimal or suboptimal quality level combo.
The simulated annealing method is a probabilistic technique
for effectively approximating the global optimum of a given
function, which is typically used in discrete but very large
configuration spaces, and in the presence of a number of local
optima.

The specific algorithm is given in Algorithm 1. Here,
quaLevelOptions isNrow ·Ncol-dimension (same as the number
of tiles in a chunk) vector space (implemented with multi-
dimensional array), enumerating all the optional quality level
combos satisfying the monotonicity constraint. The gist of our
algorithm is the adaptive stride adjustment for combo searching.
After using our searching acceleration techniques, RoSal360
only needs to compute hundreds of paces to find the near-optimal
solution (i.e., the quality allocation with the almost maximal
reward). Table I lists the average time consumption and opti-
mal reward of the exhaustive search scheme and our speed-up
methods.
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Algorithm 1: Saliency-Driven Quality Allocation With
Simulated Annealing for Chunk i.

Input: Sal, Bt(i), di, li−1, quaLevelOptions, F , λ1, λ2, γ
Output: li
1: Initialize li = the combo with the lowest quality levels,

n = 0, maxRew = −10000, stride = 1, strideAdd = 2,
strideLim = 2, countAdd = 1, countLim = 1, batch =
100;

2: while n < len(quaLevelOptions) do
3: ql = quaLevelOptions[n];
4: if Bt(i) −

∑
j di(j) ≤ γ then

5: if countLim % batch == 0 then
6: strideLim = strideLim × 2;
7: end if
8: countLim = countLim + 1;
9: stride = strideLim;

10: else
11: rew = computeReward(Sal, ql, li−1, F , λ1, λ2);
12: if rew > maxRew then
13: maxRew = rew; # update the maximal reward
14: li = ql; # update the optimal allocation
15: stride = 1;
16: else
17: if countAdd % batch == 0 then
18: strideAdd = strideAdd × 2;
19: end if
20: countAdd = countAdd + 1;
21: stride = strideAdd;
22: end if
23: end if
24: n = n + stride;
25: end while
26: return li;

TABLE I
OUR TECHNIQUES ACHIEVE AN 87× COMPUTATION SPEED-UP TO FIND THE

NEAR-OPTIMAL SOLUTION OF QUALITY ADAPTATION, COMPARED TO THE

EXHAUSTIVE SEARCH

C. RL-Driven Online Correction

To improve the QoE of outlier viewers with distinctive pref-
erences, we design a RL-driven online correcting algorithm
combining offline saliency information and online viewing data
to correct the unfrequent but improper quality allocations caused
by saliency bias.

Basic Idea. Parallel from saliency-weighted quality allocation
(expounded in Section V-B) for the next to-be-downloaded
chunk, RoSal360 performs the HMT-driven quality allocation
algorithm (refer to [10]) for buffer-in chunks (i.e., the chunks that
are already downloaded but are not consumed by the viewer yet).
If the expected quality level for some buffer-in tile according to
the HMT-driven quality allocation decision is far higher than

Fig. 9. RL-driven online correction mechanism for robustness to saliency bias.

the actual quality level of this tile, this tile would be judged to
be with an improper quality allocation. Then the RL agent is
responsible for the decision if this buffer-in, improper tile will
be finally corrected, i.e., being redownloaded and replaced in
high quality, as depicted in Fig. 9. Only the improper tiles will
trigger the correction-or-not inference by the RL agent and the
proper tiles (account for the larger proportion of tiles, in fact)
will not.

An improper quality allocation judged by HMT-driven qual-
ity adaptation algorithms will not be necessarily corrected in
RoSal360. On one hand, the HMT-driven quality adaptation is
not always credible enough despite relatively small prediction
horizons (i.e., the size of pw) for buffer-in tiles. On the other
hand, redownloading would influence the normal buffer dynam-
ics and consequently increase the risk of rebuffering. Moreover,
the redownloaded tiles will be effectless if they fail to arrive
before the time they should be displayed. Therefore, outrunning
the forecasted transmission time for redownloaded tiles would
lead to a overdue-redownloading loss, i.e., bandwidth overhead
without any quality gain. The saliency-driven and HMT-driven
quality adaptation modules are running parallelly. However, the
downloading processes of the two modules are performed seri-
ally rather than parallelly for unambiguous network feedbacks.
That is, if the system redownloads some tile for correction, the
regular downloading of the next chunk would be delayed until
the correction is finished.

The mission of RL agent is to decide whether an improper
tile (judged by the HMT-driven quality allocation before RL
agent inference) should be finally corrected given the allocation
accuracies, current Player states, and network estimations. If
a tile is decided to be corrected by the RL agent, RoSal360
will revisit the HMT-driven quality decision and replace this tile
using the quality level of the HMT-driven decision (with the
same tile position).

Inputs of the RL Agent. As shown in Fig. 10, the state inputs
of the corrector agent (i.e., a DNN model) include the accuracy
of saliency-based behavior estimations, the accuracy of HMT-
driven viewport predictions, the buffer occupancy, the time left
before playing for the tile, the tile’s TTP result, and the TTP
confidence. During the playback, RoSal360 constantly tracks the
head directions of viewers on-the-fly, and computes the overlap-
ping rate of the actual viewport and the top-four tiles (ranked in
order of saliency scores; for 4× 6 tiling), which is regarded
as the accuracy of saliency-based behavior estimations. The

Authorized licensed use limited to: University of Southern California. Downloaded on January 19,2024 at 05:55:31 UTC from IEEE Xplore.  Restrictions apply. 



1320 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 2, FEBRUARY 2024

Fig. 10. RL architecture of the tile corrector.

accuracy of HMT-driven viewport predictions is sensitive to the
size of pw. Hence, for a tile with an improper quality allocation
judged by HMT-driven quality adaptation, RoSal360 samples
five recently historical accuracies of viewport predictions with
the same pw as this tile, and regards the mean value as the
final accuracy estimation of the HMT-driven viewport prediction
for this tile. Moreover, the online correction is always executed
after transmission time prediction (Section V-A) for more robust
correction decisions. After computing the TTP result (expressed
in Eq. (5)), we revisit the raw probability distribution generated
by our TTP model, and regard the corresponding probability
value of the transmission time interval that the TTP result
belongs to as the TTP confidence. The TTP confidence measures
the credibility of TTP results.

Specific Algorithms and Training. We use the policy-based
RL architecture, in which the RL agent makes decisions based
on a policy network π(st, at). π maps the state vector st and
the action at to the probability that at is taken at state st.
The specific model we use is a multi-layer perception (MLP)
network (the most popular DNN architecture), with two hidden
layers of 64 and 32 neurons, respectively, and ReLU activation
functions. After the final softmax function, the model outputs a
two-dimension vector, representing the probabilities of whether
a buffer-in tile will be redownloaded. We use the policy gradient
method [27] to train the above DNN model due to its simplicity
and easy implementation.

Let θ denote the policy parameters and J(πθ) denote the
expected return of the policy. The gradient of J(πθ) can be
expressed

∇θJ(πθ) = E
τ∼πθ

[∑
t

∇θ log πθ (st, at) (QoE(τ)− b)

]
,

(11)
where τ is a trajectory of correction decisions over πθ , QoE is
the training reward similar as the metric defined in Section III,
and b is a baseline parameter. Then the policy parameters can be
updated via stochastic gradient ascent on the policy performance

θk+1 = θk + α∇θJ (πθk
) , (12)

where α is the learning rate that decays from an initial value as
the training epoch increases.

The quality allocation model we use can be regarded as a
configuration parameter of the RL environment. For example,
the buffer occupancy, as a part of RL agent input, is influenced
by the underlying quality allocation model. Therefore, we keep

the parameters of both saliency-driven and HMT-driven quality
adaptation models fixed during the training of the RL agent for
a specific training. In other words, the RL agent in RoSal360
learns to make correction decisions based on the dynamic states
of user behaviors and network environments, given the specific
quality control model.

VI. IMPLEMENTATION

We implemented a prototype of RoSal360, client running on
a Mini PC, based on 11,300 additional lines of JavaScript and
Python code, on top of the HEVC Tiles Merger [28]. The Mini
PC, Dell OptiPlex 3080MFF, is equipped with a mobile-class
Intel UHD Graphics 610 GPU, an Intel Pentium G6405 T
1.8 GHz dual-core processor, 4 GB of RAM, and a 128 GB
SSD. It is equivalent to a common commodity smartphone in
computing resources. For instance, the Samsung Galaxy S20
phone [29] is equipped with a Qualcomm Adreno 650 GPU, a
Qualcomm Snapdragon 865 1.8-2.84 GHz multi-core processor,
8 GB of RAM, and a 128 GB SSD, which is similar to our Mini
PC settings. Thus, we elaborately chose the Mini PC to emulate
the computing resources of a mobile VR device.

We used FFmpeg [30] and Kvazaar [31] to encode videos in
High Efficiency Video Coding (HEVC) formats due to native
support for tiled coding [32], [33], and used MP4Box [34] to
package and dashify HEVC bitstreams. The video server was a
web server over HTTP built in Ubuntu 20.04. We constructed
an HTML5-based, DASH-compatible VR Player to stream and
display HEVC-tiled 360-degree videos on the Microsoft Edge
browser on top of the HEVC Tiles Merger [28]. The Player
fetches and merges split tiles with different qualities according
to a controllable quality matrix. To facilitate online correction,
we set a JavaScript Array before the buffer queue in the Player.
The downloaded video files are placed in the Array first and
are deferred to enter the buffer queue. The videos in the Array
maintain the independence of tiles without merging or decoding,
which means that any tile replacement in the Array does not
impact other tiles. For user studies on untethered mobile VR
headsets, we used A-Frame [35], a web framework for building
VR experiences, to render and project 360-degree video streams
from the PC Player into the mobile VR headset (i.e., Oculus
Quest 2 [2]) through the native casting software. Simultaneously,
we acquired the online viewing data by VRFrameData.pose in
A-Frame and sent the viewing data to the online corrector. The
DNN structures in this work were constructed using the Pytorch
repository.

Fig. 11 shows a snapshot of our prototype implementation. We
adopted the PC-based implementation approach for our client
player, largely due to abundant support of the well-developed,
compatible software stack and open-source tools on the Win-
dows platform, e.g., browser support for Media Source Ex-
tensions (MSE) API and hardware HEVC decoding. A similar
prototype implementation scheme was adopted by the previous
work [36]. That being said, lack of an implementation totally
built on commodity mobile devices adds a complication to the
practical deployment and application in industry. We further
discuss this limitation in Section VIII.
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Fig. 11. A snapshot of RoSal360 implementation.

VII. EVALUATION

In this section, we evaluate the performance of RoSal360 with
real prototype implementation over commodity WiFi, 4 G/LTE,
and 5 G wireless networks in the wild. Large-scale evaluations
through both gaze-annotated 360-degree video datasets and a
survey-based user study demonstrate that RoSal360 achieves
the higher video quality, the lower rebuffering ratio, the lower
quality variation, and the higher QoE score, compared to the
state-of-the-art approaches. We also illuminate the reasons of
several key algorithm designs in RoSal360 by a component-wise
experimental analysis.

A. Gaze Data Collection

Gaze data have been becoming indispensable annotations
for precise 360-degree video quality assessment (VQA) [17],
[37]. Hence, we built a gaze-annotated long 360-degree video
dataset1 due to the scarcity of gaze datasets with long-duration
videos. We downloaded 23 long 360-degree videos (2-11 min-
utes, 11 genres, 4 K resolution, 30-60 fps, and ∼2 hours in
total) from YouTube according to the popularity ranking. The
genres include aerial, animal, cartoon, dance, diving, game,
mixed, racing, roller coaster, scenery, and outer space. Then,
30 participants viewed these videos using the HTC VIVE PRO
EYE VR headset with built-in Tobii’s gaze tracking [38]. The
participants, aging from 20 to 51, are students, staff, and faculty
members from two universities and a company. 47% of them
are female, 57% of them wear glasses, and 63% of them are
first-time viewers for 360-degree videos. The gaze data of each
participant were recorded by the Tobii Pro Lab software [39].
VIVE Wireless Adapter [40] enabled viewers to explore freely
without wired hindrance. Any participant that felt dizzy or other
discomfort discontinued watching and the corresponding data
were discarded. The participants experienced the uniformly high
video quality to eliminate the effect of spatially-uneven quality
distribution on viewing behaviors.

B. Experimental Setup

We state the experiment settings in our evaluation.
Videos. We used totally four-hour 360-degree videos an-

notated with head directions and gaze points in our evalua-
tions, including 80 short videos (20-60 seconds) in the Gaze18

1The raw 360-degree videos, gaze dataset, and the corresponding saliency
maps are publicly available at https://github.com/salientVR/gazedata.

TABLE II
END-TO-END BANDWIDTH AND RTT OF DIFFERENT WIRELESS NETWORKS THE

SYSTEM ACTUALLY UNDERGOES FROM OUR MEASUREMENTS, IN OUR

EVALUATIONS

dataset [41] and 23 long videos (2-11 minutes) in the dataset we
built (Section VII-A). The collected viewing data are serially
ingested by the client player to simulate the viewing process.
The videos exhibit a large diversity in terms of genres, and were
viewed on commodity VR headsets with free, untethered, and
immersive viewer experiences. There are both videos shot from
fixed cameras and videos captured with a moving camera, which
probably introduces different variances in head/gaze trajecto-
ries of viewers. Further, some videos possess relatively more
complex content scenes (e.g., numerous foreground objects in
a frame) while the scenes in some videos are simple, which
would influence the difficulty of saliency analysis. Each video
was encoded into 2.13-second chunks with 4× 6 tiling and five
quality levels (QP=22,27,32,37,42).

Network Conditions. We used five remote cloud servers in
different cities as video servers through various wireless network
links to evaluate RoSal360 in the wild. The real wireless network
environments include a campus WiFi link, a commodity 4 G/LTE
link, and a commodity 5 G link. To facilitate large-scale net-
work experiments, we used a cellular network CPE (Customer
Premise Equipment) to convert 4 G/LTE and 5 G signals into
WiFi signals. We ran the video streaming system during different
time periods, e.g., peak hours and non-peak hours. Table II lists
the end-to-end bandwidth and round-trip time (RTT) of wireless
networks the system actually undergoes from our measurements.
We simultaneously ran multiple client players with RoSal360
and baselines (elaborated later), and downloaded videos from
the same video server to keep the network condition as equiv-
alent as possible for different algorithms. Note that the popular
evaluation scheme of trace-driven network emulations fails to
fully emulate the effects of tile sizes on actual transmission times
in the wild, which thus was not adopted by us.

Algorithms for Comparison. We compared RoSal360 with
SalientVR [17], Flare [10], MPC [42] and long-buffered Flare
(LB-Flare). SalientVR is a saliency-driven 360-degree video
streaming system with a crude TTP scheme and a heuristic
online correction mechanism. We compared our work with
SalientVR to validate the positive effects of the DNN-based
TTP algorithm (Section V-A) and the RL-based correction algo-
rithm (Section V-C) in RoSal360. Flare is a typical HMT-driven
360-degree video delivery method. LB-Flare, a variant of Flare,
expands the buffer size from three seconds to five seconds
and tends to keep a longer buffer than Flare. By comparison
to Flare and LB-Flare, we illustrate that our saliency-driven
quality allocation algorithm (Section V-B) achieves a better
trade-off between video quality and rebuffering, over the pure
HMT-driven approaches. MPC is a control-theoretic adaptation
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Fig. 12. Overall evaluation results in video quality and rebuffering ratio for different mobile 360-degree video streaming systems over multiple real wireless
network links in the wild. (Error bars show 90% confidence intervals.)

approach designed for non-tiled video streaming. In essence,
360-degree video streaming is a kind of special video streaming.
Despite tile-based delivery, allocating the same bitrate to all tiles
is technically feasible. Although MPC is designed for general
videos without specifically considering 360-degree videos, MPC
has potential to be applied to 360-degree video adaptation due
to its acknowledged advantages in the trade-off between video
quality and rebuffering. Therefore, we aslo compared RoSal360
with MPC for a solid evaluation.

Metrics and Settings. We mainly used the gaze-driven
PSNR [17] and the rebuffering ratio (i.e., the ratio between the
total rebuffering duration and total watching time) to assess the
algorithm performances. The gaze-driven PSNR is defined as ε ·
PSNR(GazeRegion) + (1− ε) · PSNR(V iewport), where
the gaze region is the 25◦-radius gaze-centric circular region, and
ε ∈ (0, 1) is the weight coefficient. We set ε = 0.7 in this work.
The survey-based rating by a user study, video quality variations,
and viewport-driven PSNR were also discussed. In RoSal360,
we adopted the 4× 6 tile segmentation for video delivery, i.e.,
Nrow = 4 and Ncol = 6; we adopted the model configuration
with Natten = 1, Nhead = 3, Nout = 20, and aNout

= 2 s; we
empirically set λ1 = 0.1, λ2 = 0.3, and γ = 2.5 in the quality
adaptation module. For other algorithms, we used the same
parameter settings as their papers.

C. Improvement Over Real Wireless Network Links

Figs. 12a, 12b, and 12c shows the overall evaluation results
of RoSal360 and other alternative algorithms over real-world
WiFi, 4 G/LTE, and 5 G links in the wild, respectively. For
WiFi results, RoSal360 achieves a 2.59-6.33 dB video quality
improvement and reduces the rebuffering ratio by 1.53-4.12×,
compared to existing approaches. For commodity LTE results,
RoSal360 achieves a 2.75-5.12 dB video quality improvement
and reduces the rebuffering ratio by 1.4-3.11×. For commodity
5 G results, compared to alternatives, RoSal360 achieves a 1.76-
6.88 dB video quality improvement and reduces the rebuffering
ratio by 1.41-4.02×.

For Flare, the LR-based HMT predictions are not accurate
enough to support the video delivery with high perceived qual-
ity even keeping a short pw. Further, the small buffer size in

the client player for the HMT-driven solutions brings more
rebuffering under the fluctuant wireless network bandwidth. In
contrast, SalientVR outperforms the HMT-driven approaches
by virtue of more accurate attention estimations and a larger
buffer size to absorb network variations. However, SalientVR is
adversely affected by the non-robust saliency bias correction and
inaccurate network estimations, and consequently fails to tap the
full potential of saliency, resulting in inferior performances over
RoSal360. LB-Flare attempts to reduce rebuffering by simply
enlarging the buffer size, but suffers from the distinct quality
degradation due to the ineffective HMT prediction.

Fig. 13 depicts the separate evaluation results of different
approaches across eight typical video genres to explain the
generalizability of RoSal360. We see that RoSal360 generally
performs better in terms of the trade-off between video quality
and rebuffering than the state-of-the-art algorithms, by the more
robust saliency correction and the more accurate transmission
time prediction. That being said, the gains of RoSal360 vary
across videos with different genres. For the videos with the
relatively focused region of interest (ROI) such as the genre
of mixed, RoSal360 gains less in quality enhancement than the
videos with the dispersed ROI such as the dance, due to more
unfrequent saliency bias or HMT prediction errors.

D. Microbenchmarks

In this study, we altered some key components in RoSal360
one-by-one to specify the reasons of these settings and better
understand their contributions to end-to-end QoE improvements
for mobile 360-degree video streaming.

Effects of Transmission Time Estimation. We tried different
TTP (i.e., transmission time prediction) algorithms, including
HM, SVM, Fugu, and ours (introduced in Section V-A), in the
mobile 360-degree video streaming system to verify the effects
of the TTP module. The harmonic mean scheme (HM) uses
the harmonic mean value of past several throughput samples to
predict the future bandwidth, and takes the ratio of chunk sizes
to the estimated bandwidth as the TTP results, which is widely
adopted by previous adaptation methods [10], [17], [42]. Raca
et al. [43] utilizes the support vector machine (SVM) to predict
the network bandwidth, with the same way as HM to compute
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Fig. 13. Separate evaluation results in video quality and rebuffering ratio across eight typical video genres.

Fig. 14. Microbenchmarks: component-wise algorithm analysis for end-to-end system improvement in video quality and rebuffering ratio.

TABLE III
A DEEP COMPARISON OF TRANSMISSION TIME ESTIMATION WITH THE

STATE-OF-THE-ART ALGORITHMS ON MULTIPLE ERROR-BASED EVALUATION

METRICS

TTP results. Fugu [19] designs a simple fully-connected DNN
scheme for conventional non-360-degree videos to predict the
transmission time of chunks directly. As shown in Fig. 14a, our
attention-based tile-size-aware TTP algorithm with a decoupled
DNN model design significantly boosts the reduction of play-
back rebuffering by the more robust and accurate TTP over
alternatives. Table III also lists multiple common error-based
quantitative indexes to evaluate the performances of different

TTP methods more deeply. We computed the mean absolute
error (MAE), the root mean square error (RMSE), the mean
absolute percentage error (MAPE), and the cross entropy loss
(C-E loss) for different approaches. We see that our TTP ap-
proach achieves the lowest prediction errors on different metrics
compared to the state-of-the-art schemes.

Effects of Our Quality Adaptation Algorithm. Fig. 14b com-
pares the formulation-driven saliency-aware quality adaptation
algorithm (mentioned in Section V-B) designed in RoSal360
with another existing saliency-based quality adaptation method
used in SALI360 [16]. SALI360 also notices the potential of
saliency in 360-degree video streaming; however, it mainly
addresses the issues about cube map encoding and only uses
a crude quality allocation scheme. For fairness, we used the
identical saliency maps, and only changed the pure quality
adaptation methods, i.e., how to utilize the given saliency maps
to control video fetching. We observe that the quality allocation
strategy in SALI360 fails to fully leverage saliency information
to balance the trade-off between video quality and rebuffering,
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leading to the inferior results over RoSal360. By contrast, the
quality adaptation algorithm in RoSal360 performs better by
the sophisticated formulation, the robust buffer management,
and the simulated-annealing solving acceleration, which demon-
strates the superiority of our quality allocation approach per se
on developing the advantage of saliency.

Effects of Online Correction. To evaluate the effects of online
correction, we chose 15 real viewing trajectories of viewers that
preferred to gaze at low-salient regions classified by collectively-
determined saliency inference. Fig. 14c compares the RL-driven
online correction mechanism (Section V-C) with the heuris-
tic correction method proposed by SalientVR [17]. We see
that the online correction mechanism effectively enhances the
video quality by replacing the improper quality allocations (i.e.,
low-quality tiles) caused by saliency bias for outlier viewers.
Moreover, RoSal360 achieves the more robust correction than
SalientVR by the joint awareness of both behavior prediction
accuracies and network estimation confidences.

We also found that the correction mechanism increases the
possibility of early awareness of network congestion, leading
to rebuffering reduction compared to the system without correc-
tion. In RoSal360, the updating of estimated network conditions
is triggered after the downloading of all tiles in the next chunk
or the downloading of all to-be-corrected tiles. The number of
to-be-corrected tiles tends to be largely lower than the number
of tiles in a chunk (i.e., 4×6=24). Therefore, the correction
mechanism increases the frequency of network condition es-
timating, which lowers the adverse impact of unpredictable
network degradation.

Different Tile Segmentation Methods. Fig. 14d compares
different tile segmentation methods (i.e., 2× 4, 4× 4, 4× 6,
and 6× 6) in RoSal360. The 4× 6 tiling method gains the
highest video quality and the lowest rebuffering ratio. A more
fine-grained 6× 6 tiling method increases the flexibility of
quality adaptation but limits the network utilization. The trans-
mission time of video tiles does not scale linearly with tile
sizes. Smaller tile sizes lead to lower throughput rates due to the
slow-start-restart behavior in the TCP protocol [19], [44]. More
fine-grained tile splitting also increases the time consumption
of quality adaptation due to the larger search space. Compared
to the 4× 6 tiling method, the 6× 6 tiling method requires a
4× more solving time of the optimization problem (Eq. (10)).
Overall, the 4× 6 tiling method makes a better tradeoff among
the flexibility of quality adaptation, network utilization, and the
time consumption of solving quality allocation problems.

E. Improvement in Other Evaluation Metrics

Besides the gaze-driven PSNR and the rebuffering ratio
demonstrated above, there are some other QoE assessment
metrics that are worthy of measurement and discussion, and
therefore, we further quantify the QoE performances on these
metrics with different algorithms.

Survey-Based Rating by a User Study. 30 participants viewed
10 videos by mobile VR headsets [2] to evaluate the subjective
QoE performances of different algorithms. The users’ demo-
graphics are similar as illustrated in Section VII-A while the

Fig. 15. Survey-based rating (i.e., MOS) by a user study.

Fig. 16. Temporal video quality variation.

Fig. 17. Spatial video quality variation.

participants are diverse for research validity. After watching a
video, the viewer was required to rate the experience between
1∼5, i.e., the mean opinion score (MOS), which is a user rating
measure used in the domain of QoE [11]. We randomly picked
real gaze trajectories from the viewing dataset we collected
(Section VII-A) and the Gaze18 dataset [41], and marked the
gaze point on each video frame. The viewers were asked to gaze
at the markers to ensure the same viewing trajectory for the same
video across different algorithms and viewers. This method of
user study was adopted by previous works [11], [17].

As shown in Fig. 15, RoSal360 gains a significantly higher
user rating, with a 31.45% MOS improvement on average,
compared to alternatives. The user feedbacks indicate that the
rebuffering is more annoying than the quality degradation for the
majority of participants when experiencing mobile 360-degree
video streaming. For RoSal360, the remarkable decrease of
rebuffering without quality degradation significantly boosts the
viewer QoE, compared to the state-of-the-art methods.
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Fig. 18. User Viewport-driven PSNR values.

Fig. 19. Compression overhead and time cost of different encoding methods.
x264 [46], Kvazaar [31] encoders are used for H.264 and HEVC encoding,
respectively.

Quality Variations. Figs. 16 and 17 compare the temporal and
spatial video quality variations (the lower the better) of differ-
ent algorithms, respectively, which are specifically defined in
Section III. The temporal quality variation quantifies the quality
changes between neighboring chunks during the video playback.
The spatial quality variation quantifies the quality difference
across tiles inside the user viewport, which is a unique metric
for spatially quality-uneven video delivery. RoSal360 achieves
lower quality variations (both temporal and spatial) than other
tile-based algorithms. Moreover, RoSal360 can further reduce
the quality variations by tuning the penalty coefficients λ1 and
λ2 in Eq. (10), although some researchers claim that the quality
variations would incur limited QoE degradation [10], [45].

Viewport-Driven PSNR. We also evaluated different mobile
360-degree video streaming algorithms using the conventional
viewport-driven PSNR (i.e., the PSNR value of the entire user
viewport), although it is less precise than the gaze-driven PSNR.
As demonstrated in Fig. 18, RoSal360 likewise achieves positive
gains for the viewport-driven PSNR, compared to other quality
adaptation schemes.

F. System Overhead

We present a part of system overhead in RoSal360.
Tiled Encoding. We used a Ubuntu Server with NVIDIA

TITAN X GPU to encode the 360-degree videos. Fig. 19 depicts
the average compression overhead and time cost for encoding
a 2.13-second video chunk with different tiling methods. We
measure the compression overhead using the chunk size in units
of the size of baseline (i.e., a 2.13-second, non-tiled, HEVC-
encoded chunk). The time cost is also expressed in units of the
baseline consumption for a clearer comparison. Compared to

the non-tiled HEVC encoding, the HEVC-encoded 4× 6 tiling
increases the compression overhead by 5% only, but reduces the
encoding time by 10× by tile-level parallel encoding.

Initial Downloading of Saliency Maps. We present and deliver
chunk-level video saliency maps in JSON formats. Although the
exact size of the saliency-map profile file for a video depends
on the number of chunks in this video and the method of tile
segmentation, the compressed saliency map file for initialization
only occupies less than 0.5 KB for a chunk with 4× 6 tile
splitting. Therefore, the traffic cost and time assumption of
downloading saliency maps at the initial phase are negligible
compared to downloading a video chunk.

Downloading of Model Weights. The weights sizes of TTP
model and correction model are 73 KB and 2.2 KB, respec-
tively. Thus, the overhead in term of weights file downloading
is negligible. Moreover, the model weights do not need to be
downloaded just before a video is watched in most cases. The
weights only should be downloaded or updated when the client
application is downloaded or updated, or the video list on the
streaming website is being loaded parallelly. Therefore, the
weights downloading would not increase the start-off delay for
video watching in most cases.

Client-Side Overhead. We used a weak Dell Mini PC (Section
VI) as the client. The time consumption per inference of the
TTP neural network model in RoSal360 is about 30 ms with
the deployment on weak CPUs, by virtue of a decoupled model
architecture design (Section V-A). The RL model for online
correction (Section V-C) is built with two lightweight layers of
64 and 32 neurons, which spends about 5 ms per inference. The
quality adapter averagely costs 110 ms per quality allocation
of one chunk, which is negligible compared to the transmis-
sion time of one chunk. RoSal360 applies the monotonicity
constraint and the simulated-annealing optimization algorithm
to remarkably reduce the computation complexity and time
consumption of quality adaptation. The HTML5-based Player
averagely consumes 16% CPU usage, 210 MB memory, and
19.4 ms duration per decoding and tile merging of one chunk.

We also tested the core part of our adaptation algorithms
on a commodity Android phone with Qualcomm Snapdragon
860 SoC and 6 GB of RAM. The quality adapter costs nearly
180 ms per quality allocation of one chunk on the Android phone,
which is acceptable in video streaming applications. Note that
the research issues considered in this manuscript is orthogonal
to the underlying operating system. Moreover, the majority of
the online parts of our algorithms could run on the resource-rich
cloud server instead of the end device, with a low communication
overhead. It means that the overhead of our algorithms running
on mobile devices is not intractable in real-world applications.
Therefore, the device-specific challenges are not our main con-
cern. We further discuss this issue in Section VIII.

VIII. LIMITATION AND DISCUSSION

In this section, we present the limitations of RoSal360 as well
as a related discussion.

Effect of Quality Distribution on Viewer Attention. We ob-
served the effect of spatially uneven video quality distribution
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on viewer attention. For example, more viewers gaze at the
high-quality region than the low-quality region though both
regions are deemed high-salient. That is, the quality allocation
scheme would unintentionally lead viewer’s attention to tiles
with allocated high quality. In our future work, we will study
this effect which is a common issue faced by quality-uneven
video streaming. Note that this effect does not impair our al-
gorithm evaluations because the viewing behavior data used in
our experiments were collected with the uniformly high-quality
viewing.

Different Gains Across Videos. We found that RoSal360
gains less for saliency-uniform 360-degree videos compared
to saliency-uneven videos. For saliency-uniform videos, the
saliency scores in different regions are almost same. Therefore,
the saliency map would fail to provide meaningful prior infor-
mation for estimating the new viewers’ attention distribution.
Fortunately, in light of our observations and experiments, most
of 360-degree videos are saliency-uneven to some extent and
significantly benefit from RoSal360.

Advanced Wireless Network. More advanced wireless net-
work (e.g., 5 G) would relieve the bandwidth pressure. However,
the insufficient and variable bandwidth in real-world wireless
network environments remains a challenge for mobile 360-
degree video streaming. First, the advanced communication
technology such as 5 G still suffers from the high power con-
sumption, small coverage range, high susceptibility to blockage,
or cybersecurity issue [47]. As far as we know, 4 G/LTE and
even cellular networks beneath 4 G/LTE have not been replaced
completely so far. So, the limited bandwidth still challenges the
high-quality 360-degree video delivery in some cases. Second,
the transmission throughput the user actually experiences is
limited by the bottleneck bandwidth in the end-to-end link and
the number of the users share this identical link. So, when the
link bottleneck is not the last hop or the user number is large,
the transmission throughput is probably insufficient. Third, even
if the high throughput is technically supported in the future,
the internet service provider (ISP) is likely to not allow high
download bandwidth for everyone due to the high bandwidth
cost. It is obvious that the video transmission in high quality
for every direction of spherical views is inefficient and wasteful
for network resources. Finally, the inherent volatility trouble of
wireless networks has not been fully solved. Consistent (not
only average) high throughput and low latency are expected
but have been not fulfilled up to now. In sum, the inadequate
and unstable wireless bandwidth still challenges the 360-degree
video streaming in many cases.

Lack of System Implementation on Mobile Devices. We ac-
knowledge that operating systems (OS) are different between
the Mini PC we used and some of all-in-one VR headsets such
as Oculus Quest 2. However, we believe that the algorithm evalu-
ations in our work are reasonable and valid enough. First, a large
number of previous works adopt the similar evaluation method
as ours with the Windows-based implementation, e.g., [17], [36],
[48], [49].

Second, the research issues considered in this manuscript
is orthogonal to the underlying OS choice. Our work mainly
focuses on the tile-level transmission time prediction and online

saliency bias correction. The cornerstone of our algorithms in
terms of practicality, e.g., the feasibility of tile-based 360-degree
video delivery, decoding, merging, and rendering, has been
fully constructed and verified on community mobile devices
such as Android-based smartphones by prior works [10]. Thus,
the device-specific challenges of tile-level 360-degree video
streaming are not the main concern in this manuscript. While
the algorithm performances may vary across different OS, our
algorithm would be superior to the state-of-the-art approaches
on most end devices due to the algorithm design upon the
assumption that the computing resource is limited. Therefore,
our implementation based on the Mini PC is valid enough to
prove the advantage of our algorithms. Note that our algorithms
can also be applied to Windows-based VR devices such as
Value Index, which are able to stream videos through wireless
networks.

Third, in fact, the majority of the online parts of our algorithms
such as the DNN-based network estimation could run on the
resource-rich cloud server instead of the end device, with only
a low overhead concerning the command communication (less
than 1 KB per chunk), e.g., using the remote procedure call
(RPC). It means that the overhead of our algorithms running
on mobile devices is not intractable in real-world applications.
Therefore, the device-specific challenges for RoSal360 are not
urgent.

That being said, we also tested the core part of our adaptation
algorithms on a commodity Android phone with Qualcomm
Snapdragon 860 SoC and 6 GB of RAM. The corresponding
overhead (Section VII-F) is still acceptable for video streaming
applications.

IX. RELATED WORK

Most of past works are built upon LR-based [10], [11], [12],
[13], [14] or DNN-based [41], [49], [50] HMT predictions, lim-
ited by the temporal correlation assumption. Some studies also
explore the opportunities of cross-user similarity [51], [52], [53],
scalable video coding [54], [55], [56], content-aware saliency
analysis [17], [57], personalized field-of-views (FoVs) [58],
super resolution [59], and hybrid schemes [48], [52], [60], [61].
By contrast, RoSal360 combines the advantages of saliency
analysis and HMT predictions, and introduces the new stud-
ies and designs for mobile 360-degree video streaming. The
main differences between RoSal360 and other saliency-based
360-degree video streaming approaches are described below.

SALI360 [16] proposes a cubemap-based 360-degree video
compression method over saliency; it does not really consider
the dynamic, DASH-based quality adaptation problem over
wireless networks. Xu et al. [52] and Li et al. [60] propose
multiple viewport prediction approaches using the HMT, cross-
user similarity, heatmaps, and saliency, but do not discuss how
to use their prediction results for quality adaptation of 360-
degree video streaming. By contrast, RoSal360 focuses on the
DASH-based, tile-level quality adaptation problem, and designs
an integrated saliency-driven adaptation algorithm including
the tile-size-aware network estimation, saliency-aware quality
allocation, and HMT-assisted error correction.
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Nguyen et al. [62] propose a head movement prediction
method for 360-degree videos merging the saliency informa-
tion and head orientation data with an LSTM-based DNN
architecture. However, they do not explore the dynamic qual-
ity allocation problem given the HMT prediction results for
tile-based video streaming. By contrast, the focus of RoSal360
is the streaming quality adaptation problem, i.e., the trade-off
between video quality and rebuffering. Thus, we aim at the
accurate network prediction and the practical tile-level bitrate
allocation, which are not considered by [62]. In addition, the
practicality of [62] in 360-degree video streaming would suffer
from the short prediction window (set to be 0.5 seconds) due
to the temporal correlation limitation, which leads to a shallow
playback buffer and then the high risk of rebuffering. By con-
trast, RoSal360 fully leverages the resilience of saliency data to
prediction window sizes, with the better practicality and robust-
ness for streaming in wireless networks. Unlike [62], RoSal360
decouples the using of offline saliency information and online
HMT data by an online correction method, which overcomes the
short buffer limitation while improves the robustness to saliency
bias.

Lee et al. [57] experiment the saliency-driven rate adaptation
using a motion-constrained tile set technique. Shen et al. [63]
integrate saliency information into the quality adaptation scheme
based on the Lyapunov optimization. SalientVR [17] formulates
the saliency-aware quality adaptation problem and solves the
problem using the simulated annealing method. By contrast,
RoSal360 utilizes a novel tile-size-aware TTP algorithm to
significantly improves the accuracy and robustness of network
capacity estimations, which is the cornerstone of quality adapter.
SalientVR [17] and Jiang et al. [64] both correct the improper
tiles by HMT-driven updating judgment. They ignore the inaccu-
racy of HMT predictions per se as well as the risk of overdue tile
redownloading. By contrast, RoSal360 considers the reliability
of both HMT predictions and network estimations, and achieves
the more robust saliency bias compensation with a RL-based
correction judgment.

X. CONCLUSION

We design and implement RoSal360, a robust and
sophisticated saliency-driven quality adaptation framework
for mobile 360-degree video streaming, to improve the
quality of experience (QoE) under the limited and variable
wireless network bandwidth. RoSal360 integrates a practical
tile-size-aware transmission time prediction (TTP) neural
network model, a saliency-aware quality allocation problem
formulation with a fast solution method, and a reinforcement
learning (RL)-driven online correction mechanism. Through
extensive prototype experiments over real wireless networks,
RoSal360 significantly improves the video quality, rebuffering
reduction, and viewer QoE over existing approaches. Moreover,
we constructed a public gaze-annotated long 360-degree
video dataset, which are not only used in our evaluations
but would also facilitate precise quality assessment and
attention behavior analysis for the 360-degree video streaming
research.
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