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ABSTRACT

FIN and RST packets that close TCP connections are often delayed
by timeout. In cellular networks, delayed FIN/RST packets often
incur significant energy consumption overhead for handsets. On the
other hand, closing TCP connection immediately after its last data
transfer avoids the energy overhead, but can cause performance
degradation as doing so makes reusing TCP connections difficult.
To resolve such a dilemma, we propose a novel TCP extension
called STC (Silent TCP connection Closure) using which both
endpoints close a TCP connection silently without exchanging
FIN or RST packets after timeout. Our solution is lightweight,
backward-compatible, and incrementally deployable. It requires
modifications to smartphone operation systems, but, if supported
by cellular middleboxes, no change to remote servers. We evaluate
the benefits of STC using a 10-day real trace consisting of 0.6
million LTE user sessions. When fully deployed, STC can save
the overall handset radio energy consumption by up to 11.3% and
reduce the network-wide signaling load by up to 6.0%.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – Wireless communication

Keywords

TCP Connection Closure; TCP FIN; Connection Reuse; TCP Op-
tions; HTTP Keep-alive; Cellular Networks

1. INTRODUCTION
In many applications such as web browsing, it is difficult to

predict when exactly data transfers of a TCP connection will finish,
since a client may initiate a new request at any time after receiving
the previous response. Thus a common practice is to employ an
application-layer timeout to close a TCP connection. For example,
HTTP keep-alive timers, which are usually statically configured,
are used by almost all of today’s HTTP clients and servers.
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TCP connections are usually closed by exchanging FIN packets
between two endpoints. The aforementioned timeout can cause
FIN packets to be delayed by seconds to minutes after the transfer
of the last user data packet. In wired networks, such delayed FIN

packets are completely inconsequential in terms of resource impact.
However, in 3G/LTE networks, they may incur significant energy
overhead consumed by the radio interface, as well as potentially
high signaling load [11, 10], due to the interaction with the radio-
layer timer that turns off the radio interface after a certain period of
inactivity. Delayed FIN packets can keep the radio interface on for
longer time by resetting the radio-layer timer, and even trigger an
additional radio state switch by turning on the radio (§2).

The purpose of delayed closure is to increase the possibility of
connection reuse, which reduces overheads such as TCP hand-
shake, slow start, and SSL/TLS handshake especially in cellular
networks with high latency. On the other hand, closing a TCP con-
nection immediately after data transfers avoids the radio energy and
signaling overhead but makes reusing the connection impossible.

This paper proposes a mechanism called STC (Silent TCP con-
nection Closure), the first proposal that fully addresses the above
dilemma. It enables mobile applications to reuse TCP connections

without incurring any resource overhead. The high-level idea of
STC is straightforward and practical: given that both endpoints
usually know their own timeout for closing a TCP connection, they
exchange the timeout information during the data transfer phase so
both can then close the connection silently without sending any FIN
packet. Often TCP RST packets can also be triggered by timeout
and they can be eliminated by STC in the identical way.

In STC, each endpoint sends to its peer the timeout information
embedded in a TCP option, which is always piggybacked with user
data payload to ensure reliable and in-order delivery. Henceforth
each side knows the timeout set by itself and the one set by its peer,
and chooses the smaller one as the negotiated timeout for the TCP
connection. To address the challenge of unsynchronized clocks,
STC introduces an additional “protection period” after which the
connection is finally torn down (§3).

STC is lightweight, backward-compatible, incrementally de-
ployable. It exposes simple interfaces to minimize its incurred
complexity at the application layer. Given that the vast majority
of today’s mobile apps use HTTP [13], those apps do not need
to undergo any change since HTTP keep-alive is transparently
handled by the underlying library, which only needs to be slightly
modified to incorporate STC. In addition, by upgrading middle-
boxes deployed in 3G/LTE networks [10], STC can be completely
transparent to servers too, thus making all changes be confined
within cellular networks (§4.3).

We evaluate the benefits of STC using a 10-day trace of 0.6
million user sessions from a commercial LTE network. When fully

211



Figure 1: Waterfall diagram of loading www.google.com on LTE.

�=TCP Handshake �=Object Transfer �=FIN handshake.

deployed, STC can reduce the network-wide handset radio energy
consumption by up to 11.3% and the overall signaling load by up to
6.0% (§5). STC can be applied to other access technologies using
resource control mechanisms similar to those in cellular networks.

2. MOTIVATION
Our proposal is motivated by three facts described below.
� Observation 1: Delayed FIN/RST consume radio energy

and incur signaling load in cellular networks. It is well known
that in 3G and LTE networks, there exists a radio-layer timeout
for turning off the radio interface after a period of network inac-
tivity [11, 9]. Such a timeout, called tail time, prevents frequent
radio state switches (i.e., the signaling overhead). The tail timer is
reset to a fixed value by any incoming or outgoing packet. When
the timer ticks down to zero, the radio interface is turned off. Note
that the cellular radio power contributes to as high as 1/3 to 1/2 of
the total handset power usage for 3G and LTE [11].

A delayed FIN or RST lengthens the radio-on time by reset-
ting the tail timer. Figure 1 shows a real example of loading
www.google.com on a Samsung Galaxy S III smartphone over
LTE. The waterfall diagram indicates that the three TCP connec-
tions involved are closed at 5.0 sec, while the page loading finishes
at 1.2 sec. Given that the tail timer is measured to be 11.0 sec, the
overall radio-on time is 5.0+11.0=16.0 sec. If all connections are
closed right after data transfers, the radio-on time will be reduced
by 22.5% – only 1.2+0.2+11.0=12.4 sec (closing the connection
takes 0.2 sec). But doing so prevents TCP connections from being
reused for future transfers, leading to performance degradation
especially in cellular networks with high latency.

If a FIN/RST delay is longer than the tail time and no other
concurrent data transfer exists, the delayed FIN/RST will trigger an
additional radio state switch by turning on the radio. In 3G/LTE,
turning on the radio incurs up to 30 messages over control channel,
causing signaling overhead [5].

� Observation 2: Delayed FINs are usually controlled by

application-layer keep-alive timers. Almost all web servers
have configurable keep-alive timeout settings i.e., the fixed amount
of time the server will wait for for a subsequent request before
closing the connection. For example, Apache 2.4 uses 5 sec-
onds and Microsoft IIS 7 uses 120 seconds by default. Many
servers also explicitly inform clients about their timeout using the
Keep-Alive:timeout response header. The client should attempt
to retain a connection for at least as long as indicated [3].

Mobile clients also use timers to close TCP connections. For
example, the popular org.apache.http.client library allows
developers to explicitly set the keep-alive timer for each con-
nection. We also examined the implementation of the idle TCP
connection cache (sun.net.www.http.KeepAliveCache) used
by Java HTTP libraries. By default, each (remote host, remote port)
pair can have at most five idle connections. Their timeout value is
determined by the Keep-Alive:timeout response header, or a
statically configured parameter (5 seconds by default) if the header

Kind=34 Len=2

Kind=35 Len=4 or 6

STC-permit

STC-set

0 1

TCP Connection Timeout in 100ms

2 3 4 5Byte Offset

Figure 2: The TCP options introduced by STC.

is not provided. When the client needs to fetch a new URL, it tries
to reuse an unexpired connection in the cache. For every 5 seconds,
a daemon thread scans the whole cache and closes idle connections
that are timed-out. The above implementations are extensively used
by Android applications.

Note the above application-layer keep-alive should not be con-
fused with TCP keep-alive, which probes whether a TCP connec-
tion is still alive after a long period of idle time (e.g., 1 hour) if
neither side closes it.

� Observation 3: Delayed FIN/RST are widespread. Based
on studying a 10-day LTE trace consisting of 0.6 million user ses-
sions, we found 51% of all TCP connections (72% of connections
carrying HTTP) have FIN/RST delays of at least 1 second. We
detail the measurement in §5.

3. SILENT TCP CONNECTION CLOSURE
The current FIN-based scheme for closing TCP connections

poses a dilemma: using delayed FINs often wastes radio energy and
incurs signaling load, while prematurely tearing down connections
makes reusing them impossible. STC addresses this by enabling
mobile applications to reuse TCP connections without incurring
any resource overhead. Specifically, given that both a mobile app
and the server usually know when they will close a TCP connection
(§2), in STC, both sides exchange connection timeout information
during the data transfer phase so both can then close the connection
silently without sending any FIN packet. Often TCP RST packets
can also be triggered by timeout and they can be eliminated by
STC in the same way. We next describe how key challenges are
addressed by STC in detail.

� Challenge 1: Reliable and in-order delivery of the timeout

information. To achieve this, the timeout information is encapsu-
lated into TCP options that are always piggybacked with TCP user

data (or SYN/SYN-ACK), thus providing automatic guarantee of
reliability and ordering.

As shown in Figure 2, STC introduces two TCP options. The
STC-permit option is used to negotiate during a TCP handshake
whether STC will be used. STC is only used if supported by both
sides i.e., the client sends STC-permit in SYN and the server
includes it in SYN-ACK, making STC incrementally deployable.

The STC-set option can be sent within an STC-enabled TCP
connection by either side. It contains a value x, which notifies the
receiver that the sender has chosen a connection timeout of x ∗
100 milliseconds. x usually takes two bytes, supporting a timeout
period of up to 6553.5 seconds, beyond which a four-byte value can
be used. Note that most TCP packets do not carry STC-set, which
is only used when the timeout is changed or set for the first time.

As mentioned before, STC-set messages must be piggybacked
with data packets (or SYN/SYN-ACK) so that they can be retrans-
mitted when lost, and be delivered in the same order as they are
sent. Doing so also guarantees that STC-set does not reset the
radio-layer tail timer by itself (§2) since STC-set never causes any
additional packet transfer, making STC not incur any additional
resource overhead.

STC disallows updating the connection timeout without sending
user data. Supporting such an uncommon use case requires more
complex changes to the TCP protocol e.g., STC-set messages may
need sequence numbers to ensure their delivery order. To update
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the timeout, an app can wait until the next data transfer, or establish
a new connection.

� Challenge 2: Lightweight protocol. For the ease of presen-
tation, we focus on the client-side logic. The server-side logic is
identical as STC does not distinguish between a client and a server.

For an STC-enabled TCP connection, the client’s TCP stack
maintains two variables Tclient and Tserver corresponding to the
connection timeout specified by the client (itself) and the server,
respectively, using STC-set. The client’s TCP also maintains an
inactivity timer Π, which is reset by any network activity of the
connection. When Π ticks down to zero, the connection is about to
be closed silently. The detailed logic is as follows.

1. Initially, both Tclient and Tserver are set to∞. Π is also set to∞
(i.e., never expires).

2. When the client successfully receives an STC-set with
timeout x, it sets Tserver to x. Here “successfully receive” means
the expected sequence number matches the sequence number of
the associated data packet, which is then delivered to the upper
layer. Similarly, when the client successfully sends an STC-set

with timeout x, it sets Tclient to x. Here “successfully send” implies
that the client receives an ACK packet that acknowledges the
reception of the data packet associated with STC-set. The above
mechanisms ensure that an endpoint applies its peer’s timers in the
same order in which its peer sets them, since their associated data
packets are delivered in order.

3. Usually both SYN and SYN-ACK contain STC-set. So at the
client side, both Tclient and Tserver are initialized when SYN-ACK is
received. At the server side, Tclient (maintained by the server) is
initialized when SYN is received, and Tserver is initialized when the
last ACK in the TCP three-way handshake is received.

4. The inactivity timer Π is reset to min{Tclient, Tserver} when
the connection sends or receives any packet associated with it.
Resetting Π indicates the network activity of the connection. Step
4 always happens after Step 2 and 3 if the packet contains an
STC-set message.

5. When Π expires, the TCP connection is closed silently after a
short duration (described next).
� Challenge 3: Unsynchronized timers. Due to the network

latency and its variability, the inactivity timer Π at both sides are
not strictly synchronized, leading to potential inconsistency that
Π at one side has expired but Π at the other side has not. In
order to prevent an undesired situation where an endpoint sends
data to its remote peer who has already closed the connection
silently (we call this “undesired silent closure”), on either side,
when Π expires, the connection is not closed immediately. Instead,
it will enter a protection period during which the connection can
only receive incoming data but not send any data. However, upon
the reception of any data, the connection immediately exits the
protection period and becomes fully active by resetting the Π timer
to min{Tclient, Tserver}. The protection period has small impact on
applications, as will be described shortly.

The connection will finally be closed when the protection period
ends with no incoming packet. The duration of the protection
period is controlled by another inactivity timer Ω. To determine
how to set this timer, consider an example shown in Figure 3. The
client and server reset their Π timers at t1 and t0 respectively. Right
before the client’s Π timer expires at t3, the client sends a data
packet, which arrives the server at t4. However, the server’s Π
timer has already expired at t2. Therefore, in order to eliminate the
possibility of receiving data after silently closing a connection (i.e.,

an undesired silent closure), the server’s protection period should
be at least t4 − t2 = (t4 − t3) + (t1 − t0) = RTT. In practice, the
Ω timer can be statically or dynamically set to be far greater than a
normal RTT. Figure 4 summarizes the state transitions in STC.

When experiencing packet losses, the Π timer difference be-
tween two endpoints can be larger. We therefore add extra rules to
prevent an undesired silent closure due to poor network condition.
In Figure 4, even if the Π timer expires, the transition from an
active connection to the protection period will not happen if any
of the following conditions holds: (i) there are unacknowledged
packets, (ii) there are unreceived packets (i.e., receiving packet(s)
with higher sequence number(s) than expected), (iii) either the TCP
sending buffer or the receiving buffer is not empty. This can happen
when the end-host’s CPU is busy.

The protection period ensures that STC does not cause data
packet loss at the end of a TCP connection due to a lack of explicit
FIN. However, if the protection period is not long enough, an
undesired silent closure can happen. In that case, the endpoint that
observes the incoming data will reply with a TCP RST without
acknowledging the data, so the remote peer’s TCP stack will close
the corresponding connection and notify the application about the
failed delivery, and the application will establish a new connection
so the correctness of the application logic is not affected. However,
we expect this will happen extremely rarely given the aforemen-
tioned measures against an undesired silent closure.

4. DISCUSSIONS
We discuss implementation and deployment issues of STC.

4.1 Minimize Changes to Applications
STC provides two interfaces to applications:

• Socket options for enabling STC and setting connection
timeout to be piggybacked with the next user data.

• Interface for applications to query the state of a connection
(Figure 4) and its remaining lifetime (i.e., the Π timer).

The above interfaces can be achieved by setsockopt() and
getsockopt() system calls. Other socket APIs such as send()
and recv() are not changed. Also, traditional FIN and RST can
still be used at any time (e.g., by explicitly calling close()),
and they override the STC mechanism. Using delayed FIN is
discouraged, but RST is still useful in case of an error.

We next provide examples to illustrate how existing applications
can be easily adapted to STC when it is enabled. (i) A web

server using STC does not explicitly close a connection by calling
close(). Instead, when a connection is silently closed by TCP, the
server performs clean-up as if the connection is explicitly closed. A
connection in the protection period is treated the same as an active
connection since a web server does not initiate an HTTP transaction
so it naturally only receives data during the protection period. (ii)

A client HTTP library will be changed in a similar way except
that a connection in the protection period should not be used to
send a request. (iii) Most smartphone apps use HTTP [13].
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They will remain untouched if the underlying libraries manage
TCP connections transparently. Almost all popular HTTP libraries
satisfy such a requirement.

4.2 The TIME_WAIT State
In TCP, an active closer who initiates the connection close

will eventually enter a state called TIME_WAIT before closing the
connection. In TIME_WAIT, the endpoint waits for a fixed amount
of time (twice the maximum lifetime of a packet) during which
the four-tuple (src IP/port, dst IP/port) defining the connection
cannot be reused. This eliminates an undesired situation where a
packet belonging to the old connection is delivered later to a newly
created connection with the same four-tuple. There is no need for
the other endpoint to stay in TIME_WAIT. If both sides send FIN
simultaneously, then both will hold TIME_WAIT. In STC, since it
is impossible to tell which side is the active closer, a new rule can
be applied: in a silent closure, the endpoint that sends SYN will
hold TIME_WAIT while the other endpoint will directly move to the
final CLOSED state. If both send SYN simultaneously, then both
will hold TIME_WAIT.

4.3 Interaction with Middleboxes
A legacy NAT box not recognizing STC does not affect the

functionality of STC. But when silently closed, a connection will
not be removed from the connection table of the NAT. Instead,
it will be eventually removed by timeout at the NAT, ranging
from less than 5 mins to more than 30 mins in today’s cellular
networks [12]. This is largely not an issue since NAT scales well
with the number of entries. It uses efficient hash-based lookup [7],
and for a commodity Cisco NAT box, 10K entries consume only 3
MB of RAM [2]. Note even if a connection is closed by FIN, its
NAT entry will also be removed by a timeout (e.g., 1 minute [2]).

Next, we show that if NAT boxes are aware of STC, additional
benefits can be achieved even for long-lived connections. Carriers
often configure their NAT boxes to have short TCP connection
timeout. This affects long-lived connections used by, for example,
chat apps and push notifications, which must send application-level
keep-alive messages to prevent the connections from being closed
by NAT timeout. Such keep-alive messages, if frequently sent, can
cause significant handset energy waste due to the tail time [12].
NAT boxes use timeout because they do not know when connec-
tions will close. STC instead provides a way to explicitly inform
NAT of the lifetime of a connection, thus making it unnecessary for
applications to send frequent keep-alive messages.

Proxies. Cellular carriers also deploy general-purpose proxies
for purposes such as caching and compression [10]. From the per-
spective of TCP connection management, they could be classified
into two types: split proxies (SP) and non-split proxies (NSP). The
former splits an end-to-end TCP connection into two, one between
the handset and the proxy and the other between the proxy and the
remote server. An SP makes the split transparent to handsets by
spoofing its IP address to be the server’s IP address. In contrast, an
NSP is less intrusive. It does not split TCP connections traversing
it but can modify packets on the fly.

Carriers have strong incentives to make their proxies STC-
capable: regardless of its type, as long as a proxy supports STC,
there is no need to modify remote servers (or any network element
on the upstream path of the proxy). Therefore all changes can be

confined within cellular networks. But a server can still choose to
support STC for customized control over the connection timeout.

Specifically, when a split-proxy (SP) is present, it must recognize
STC otherwise only traditional FIN/RST can be used even if both
the handset and the server support STC. Adding STC support to

an SP is the same as upgrading a server, as described before. For a
non-split-proxy (NSP), STC can function if both endpoints support
it but the NSP does not (similar to the case of NAT). Making an
NSP STC-capable is also easy. Assume a handset sends a SYN
with STC-permit and usually STC-set. If the original server
sends a SYN-ACK with STC-permit, the NSP can then let the
server handle STC. Otherwise, since the server does not support
STC, the NSP modifies the original SYN-ACK from the server
by adding STC-permit and STC-set. Also, in the data transfer
phase, the NSP attaches STC-set to data packets from the server
based on its own policy (setting Tserver to be longer than Tclient

is recommended). When the connection is closed silently, the NSP
sends a RST to the STC-unaware server on behalf of the handset
but there is no packet exchange between the NSP and the handset1.

4.4 Security
To our knowledge, STC does not bring in new security issues.

Also, firewalls can be easily configured to disable STC by remov-
ing the STC-permit TCP option (e.g., just one line of command on
Cisco firewalls [1]). This makes the use of STC fully controllable.

4.5 Alternative Solutions
STC reduces the resource overhead of delayed FIN/RST by

eliminating them at TCP layer using a lightweight protocol. The
overhead can also be potentially reduced at other layers. We next
discuss a few alternative approaches and their limitations.

Reducing the tail timer or the HTTP keep-alive timer miti-
gates the resource overhead issue. In particular, setting the keep-
alive timer to be smaller than the radio-layer tail timer helps avoid
the signaling overhead caused by delayed FIN/RST. However, there
are side effects. Reducing the tail timer leads to higher signaling
load and worse user experiences [9], and having a smaller HTTP
keep-alive timer can make reusing TCP connections more difficult.

Using fewer connections by multiplexing multiple HTTP trans-
actions into one connection can mitigate the delayed FIN issue.
A well-known realization of this approach is the Google SPDY
protocol that opens one connection per domain [8]. However,
it is quite common that a website contains multiple domains,
thus delayed FIN handshakes in SPDY can still cause resource
overhead. Regarding to performance, a recent study [8] reveals
that compared to HTTP, SPDY is more likely to incur head-of-line
blocking due to its unexpected interaction with TCP.

Piggyback FIN with delay-sensitive transfers. At the ap-
plication layer, various traffic shaping and scheduling techniques
have been proposed to make cellular data transfers more resource-
efficient. For example, delay-tolerant transfers can be delayed [6],
and predictable transfers (e.g., checking emails) can be prefetched
so that those transfers can be piggybacked with delay-sensitive
transfers or be batched in fewer data bursts, thus reducing the radio-
on time. Delayed FINs are to some extent delay-tolerant, and their
piggyback or batching can be achieved at the application layer by
calling close() intelligently. However, piggybacking FIN with
other transfers or batching multiple FIN handshakes together is not
always possible, and doing so can increase the complexity of the
application logic.

Fast Dormancy is a feature included in 3GPP since Release
7 [4]. It allows a handset to send a control message to the RAN to
immediately turn the radio state to idle without experiencing the tail
time. The handset can therefore invoke fast dormancy right after a

1If a remote server sends data to the proxy (either SP or NSP) that
is in the protection period, the proxy drops the data and sends RST
to the server. This does not happen for a web server and is expected
to be very rare for other types of servers if a long timeout is used.
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Table 1: TCP connection termination status (across all connections).

Method Initiator Proxy Flows Non-proxy Flows

FIN
Handset 77.0% 59.0%

Server/Proxy 15.0% 19.4%

RST
Handset 5.6% 2.8%

Server/Proxy 0.4% 2.6%

Not closed within 1 hour 2.1% 16.2%

data transfer to save radio energy. However, a key limitation of this
approach is that the incurred signaling load caused by frequently
switching on the radio may be too high to be handled by the radio
access network [5].

5. TRACE-DRIVEN EVALUATION
We evaluate the benefits of STC using real LTE traces, which are

large packet header data collected from a commercial LTE carrier.
The data covers a fixed set of 22 eNBs at a large metropolitan
area in the U.S. The data collection was between Oct 12 and Oct
21, 2012. For each packet, we recorded its IP and transport-layer
headers and a 64-bit timestamp. During the 10 days, we obtained
3.8 billion packets, corresponding to 2.9 TB of LTE traffic.

The data collection point is between the LTE radio access net-
work (RAN) and the core network gateway (SGW/PGW). TCP
traffic from or to server port 80 or 8080 will traverse a split proxy

(§4.3). Therefore, the network path of an 80/8080 packet is:
handset↔RAN↔data collector↔SGW/PGW↔Split Proxy↔NAT/
Firewall↔Internet. The path for all other packets is the same
except that the proxy is skipped.

To protect the privacy and anonymity of network users, we did
not collect or use any personally identifiable information. Instead,
we used hashed private IP addresses as approximated subscriber
IDs since the mappings from subscribers to private IPs of the
studied carrier are very stable (a handset changes its private IP at
the interval of several hours). We therefore separate the trace into
user sessions each consisting of packets sent to and received from
a particular private IP address. We use an idle period of 1 hour
to determine the end of a user session. Changing this threshold
to 30 minutes or 2 hours has very small impact on the results to
be described. Within a user session, individual TCP flows are
identified based on the four-tuple of src/dst IPs and src/dst port
numbers. Overall we obtained 0.59 million user sessions and 51
million TCP flows during the 10-day data collection period. TCP
contributes to 97% (95%) of the total bytes (flows). Within TCP,
77% (50%) of its bytes (flows) traverse the proxy.

5.1 Characterizing TCP Connection Closure
Table 1 shows how TCP connections (flows) in the dataset are

closed. Recall that the two endpoints of a non-proxy flow are a
handset and the remote server, while a captured proxy flow with
server port 80/8080 is between a handset and the split proxy whose
HTTP keep-live timer overrides the one of the original web server.
Table 1 indicates that connections are usually terminated by FINs
(92.0% of proxy flows and 78.4% of non-proxy flows). Regarding
to the initiator, most connections (82.6% of proxy flows and 61.8%
of non-proxy flows) are closed by the handset. About 16.2% of
non-proxy flows are not closed after being idle for at least one
hour, the threshold for separating user sessions. Such flows mostly
consist of HTTPS (port 443, 65.9%), IMAP (port 993, 10.7%), and
XMPP messaging (port 5223, 7.4%).

Figure 5(a) and (b) plot the distributions of closure delays across
non-proxy and proxy flows, respectively. The closure delay is
defined to be the timestamp difference between the last data packet
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Figure 5: (a) FIN/RST delays across non-proxy flows (b) FIN/RST delays

across proxy flows. Both subfigures have the same legends.

and the first FIN/RST packet in a flow2. We have the following
observations. (i) Within proxy flows, 72.8% (76.5%) of handset-
FIN-terminated (proxy-FIN-terminated) flows have delays longer
than 1 second. For non-proxy flows, the corresponding percentages
are only 27.7% for handset-FIN-terminated flows and 22.0% for
server-FIN terminated flows. Given that non-proxy flows are
dominated by HTTPS (port 443, 82.7%) and IMAP (port 993,
7.0%), this indicates that unlikely HTTP clients/servers that usually
employ delayed FINs, HTTPS and IMAP clients/servers tend to
close TCP connections immediately after data transfers. (ii) In
Figure 5(b), the value of about 1 minute dominates the connection
timeout maintained by the split proxy, while for server-initiated
FINs in Figure 5(a), we observe a cluster of 4-minute timeout. In
addition to the radio energy waste, such long FIN-delays also incur
signaling overhead as they are much longer than the radio-layer tail
time. (iii) TCP RST is also often delayed. In particular, within
proxy flows, 56% of handset-issued RST packets are delayed by
at least 1 second. We also observe clusters of RST delays of 1, 2,
and 5 minutes in both figures, implying that a large fraction of RST
packets are also triggered by timeout instead of unexpected errors.
Overall, delayed FIN/RST are widespread. 51% of all TCP flows
(72% of proxy flows carrying HTTP) have FIN/RST delays of at
least 1 second.

The Protection Period should be set to be at least one RTT
(Figure 3). The 99.8-percentile of non-proxy flow RTTs and the
99.9-percentile of proxy flow RTTs are measured to be 4.0 sec
and 3.8 sec, respectively. Therefore setting the protection period
duration (i.e., the Ω timer) to be 5 sec is robust enough to prevent
from receiving data after closing the connection. An end-host can
also dynamically set the Ω timer based on its RTT estimation.

5.2 Quantifying Benefits of STC
Next, we quantitatively study the network-wide benefits of STC

by comparing the resource consumption of the original trace and
the modified trace with FIN packets removed, as if STC is used
between handsets and proxy/servers. The analysis is performed as
follows. (i) For each user session u, we feed it into an LTE power
model, which computes the radio energy consumption E(u), the
radio-on time R(u), and the signaling load S(u) by simulating
the LTE Radio Resource Control (RRC) state machine [9]. S(u)
is defined as the number of radio state transitions from the idle
to the connected state. The handset parameters are configured
for a state-of-the-art LTE smartphone (HTC Thunderbolt), and the
radio access network parameters correspond to those used by the
studied carrier, whose tail timer is measured to be 11 seconds.
Applying a 3G UMTS/HSPA power model [11] yields slightly
more savings. (ii) We remove all FIN packets from u and get
the resultant trace u′. The power model then takes u′ as input
and computes E(u′), R(u′), and S(u′). (iii) The radio energy

2For flows without user data, the closure delay is the timestamp
difference between the first FIN/RST and its previous packet.
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Figure 6: Savings across user sessions. Figure 7: Savings vs. user session size. Figure 8: Incremental deployment.

saving is quantified as (E(u) − E(u′))/E(u). The savings of the
radio-on time and the signaling load are calculated in similar ways.
We conservatively do not remove any RST packets although many
of them, which are also triggered by timeout, can be eliminated
by STC in practice. Also, a user session often includes multiple
concurrent TCP connections within which one may keep the radio
on, thus reducing the benefits of STC applied to other connections.
This scenario is captured based on the real trace in our evaluation.

Savings per User Session. Figure 6 plots the distributions of
savings across all user sessions. For the radio energy and the radio-
on time, which follow very similar distributions, the savings range
from 0 to 80%. On one hand, about 38% of user sessions have little
radio energy savings (less than 1%), either because they have few
TCP connections with delayed FINs, or because delayed FINs are
overlapped with other concurrent TCP/UDP data transfers. In the
latter case, removing the delayed FINs brings no reduction in any
of the three metrics. On the other hand, for some user sessions,
the savings are non-trivial or even very significant. The 50, 60, 70,
80, and 90 percentiles of radio energy (or radio-on time) savings
are 6%, 10%, 15%, 22%, and 34%, respectively. The reduction of
the signaling overhead follows a similar distribution but the overall
saving is less.

Savings vs. User Session Size. Figure 7 studies the correlation
between savings brought by STC and the user session size. We
separate all 0.59 million user sessions sorted by their total bytes
into 10 groups each having 59K sessions. We then compute the
savings for all sessions in each group whose median session size is
shown on the X axis in Figure 7. Statistically, small user sessions
tend to have higher savings, especially for the signaling overhead.
For large sessions that are more likely to have long-lived TCP
connections, their long flow duration often diminishes the savings
brought by silent connection closure.

Incremental Deployment. Figure 8 examines the benefits of
deploying STC incrementally by eliminating FINs for only x% ∈
{0, 20%, ..., 100%} of randomly chosen user sessions. Figure 8
indicates the savings increase linearly as x increases. When fully
deployed, the network-wide handset radio energy consumption and
signaling load can be reduced by 11.3% and 6.0%, respectively.
For most non-heavy users not belonging to the long tail of the user
session size distribution, their average savings will be higher as
indicated in Figure 7. In Figure 8, “opt” on the X axis corresponds
to a scenario where in addition to FINs, all RSTs are also removed.
In that case, the overall radio energy and signaling load savings
increase to 11.9% and 6.5%, respectively.

Performance Improvement. For TCP flows carrying HTTPS
traffic, more than 70% of them are observed to be closed pre-
maturely right after the last data transfer. STC can let those
connections be more efficiently reused without incurring any re-
source overhead. Connection reuse benefits in particular SSL/TLS
over TCP where the high SSL/TLS handshake overhead can be
significantly reduced. We will quantify the performance benefits
of STC in future work.

6. RELATED WORK AND CONCLUSION
The adverse impact of delayed FIN/RST on cellular resource

utilization was first pinpointed by the ARO tool on individual
mobile apps [11]. A recent study [10] measures the timing gap
between the last data packet and the last packet of TCP flows, using
the same dataset studied in this paper. Both works qualitatively
or quantitatively indicate the importance of the delayed FIN/RST
problem, but neither proposed a concrete and effective solution
as we did in this paper. In §4.5, we discussed a few alternative
approaches that can potentially reduce the resource overhead of
delayed FIN/RST, such as using fewer connections [8], piggy-
back/batching [6], and fast dormancy [4, 5]. All of them exhibit
some limitations that are avoided in our STC design.

To conclude, STC is the first proposal fully addressing the
delayed FIN/RST problem in cellular networks. It is lightweight,
backward-compatible, and incrementally deployable. It enables
mobile apps to reuse TCP connections without incurring any re-
source overhead while prior to STC it was difficult to achieve
both advantages at the same time. We are currently working on
a prototype implementation of STC.
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