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ABSTRACT

Characterization and Optimization of Resource Utilization For Cellular Networks

by

Feng Qian

Chair: Z. Morley Mao

Cellular data networks have experienced significant growth in the recent years particularly

due to the emergence of smartphones. Despite its popularity, there remain two major chal-

lenges associated with cellular carriers and their customers: carriers operate under severe

resource constraints, while many mobile applications are unaware of the cellular specific

characteristics, leading to inefficient radio resource and handset energy utilization. My dis-

sertation is dedicated to address both challenges, aiming at providing practical, effective,

and efficient methods to monitor and to reduce the resource utilization and bandwidth con-

sumption in cellular networks. Specifically, from carriers’ perspective, we performed the

first measurement study to understand the state-of-the-art of resource utilization for a com-

mercial cellular network, and revealed that fundamental limitation of the current resource

management policy is treating all traffic according to the same resource management pol-

icy globally configured for all users. On mobile applications’ side, we developed a novel

data analysis framework called ARO (mobile Application Resource Optimizer), the first

tool that exposes the interaction between mobile applications and the radio resource man-

agement policy, to reveal inefficient resource usage due to a lack of transparency in the

lower-layer protocol behavior. ARO revealed that many popular applications built by pro-

xiv



fessional developers have significant resource utilization inefficiencies that are previously

unknown. Motivated by the observations from both sides, we further proposed a novel

resource management framework that enables the cooperation between handsets and the

network to allow adaptive resource release, therefore better balancing the key tradeoffs in

cellular networks. We also investigated the problem of reducing the bandwidth consump-

tion in cellular networks by performing the first network-wide study of HTTP caching on

smartphones due to its popularity. Our findings suggest that for web caching, there exists

a huge gap between the protocol specification and the protocol implementation on today’s

mobile devices, leading to significant amount of redundant network traffic.
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CHAPTER I

Introduction

Cellular data networks have experienced significant growth in the recent years partic-

ularly due to the emergence of smartphones. As reported by a major U.S. carrier [1],

its cellular data traffic has experienced a growth of 5000% over 3 years [1]. Despite its

popularity, there remain two major challenges associated with cellular carriers and their

customers: carriers operate under severe resource constraints, while mobile applications

often utilize radio channels and consume handset energy inefficiently.

From the carriers’ perspective, compared to the Wi-Fi and wired networks, cellular

systems operate under more resource constraints. To keep up with the explosive increase of

their cellular traffic, all U.S. carriers are expected to spend 40.3 billion dollars on cellular

infrastructures in 2011 [2]. Cellular networks employ a unique resource control mecha-

nism to manage the limited resources [3]. However, our research identified significant in-

efficiency in the current resource management policy. For example, by analyzing the data

collected from a large commercial 3G carrier, we found that up to 45% of the high-speed

transmission channel occupation time is wasted on idling, because the critical parameters

controlling the release of radio resources are configured in a static and ad-hoc manner. Cel-

lular carriers therefore urgently need methods to systematically characterize and optimize

resource usage for their networks.

From the customers’ perspective, there is a plethora of mobile applications devel-
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oped by both enthusiastic amateurs and professional developers. As of October 2011, the

Apple app store had more than 500K mobile apps with 18 billion downloads. Smartphone

applications are different from their desktop counterparts. Unfortunately, mobile applica-

tion developers often overlook the severe resource constraints of cellular networks, and are

usually unaware of the cellular specific characteristics that incur complex interaction with

the application behavior. This potentially results in smartphone apps that are not cellular-

friendly, i.e., their bandwidth usage, radio channel utilization and energy consumption are

inefficient. For example, we found that by improving the data transfer scheduling mecha-

nism of professionally developed popular mobile apps such as Facebook and Pandora, their

radio energy consumption can be reduced by up to 30% [4].

My thesis is dedicated to address both challenges, aiming at providing practical, effec-

tive, and efficient methods to monitor and to reduce the resource utilization and bandwidth

consumption in cellular networks. We leverage the implications of the underlying resource

management mechanism to balance the key tradeoffs in cellular data networks, from per-

spectives of the carrier, the mobile applications, and their complex interactions. I elaborate

the contributions of my dissertation in the following four sections.

1.1 Measuring the State of the Art: Characterizing Radio Resource

Utilization for Cellular Networks

Understanding the current resource utilization for commercial cellular networks is the

very first necessary step towards optimizing them. To achieve this goal, we collected cel-

lular data of hundreds of thousands of 3G users from the core network of large cellular

carrier in the U.S., then replayed the network traces against a novel RRC (Radio Resource

Control) state machine simulator to obtain detailed statistics about radio resource utiliza-

tion. To the best of my knowledge, our work is the first empirical study that investigates

the optimality of cellular resource management policy using real cellular traces.
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In a cellular system, a handset can be in one of several RRC states (e.g., a high-power

state, a low-power state, and an idle state), each with different amount of allocated radio

resources. The state transitions also have significant impact on the cellular network and the

handset energy consumption: state promotions (resource allocation) incur signaling load

and state demotions (resource release) are controlled by critical inactivity timers.

The RRC state machine is the key for cellular resource management but it is hidden

from the mobile applications. This motivated me to design algorithms to accurately infer

it through a light-weight probing scheme, then systematically characterize the impact of

operational RRC state machine settings. The key observation is that the radio resource

utilization is surprisingly inefficient: up to 45% of the occupation time of the high-speed

transmission channel is wasted on the idle time period matching the inactivity timer value,

which is called tail time, before releasing radio resources [5]. We further explored the op-

timal state machine settings in terms of several critical timer values evaluated using real

network traces. My findings revealed that the fundamental limitation of the current cellular

resource management mechanism is its static nature of treating all traffic according to the

same RRC state machine, making it difficult to balance tradeoffs among the radio resource

usage efficiency, the signaling load, the handset radio energy consumption, and the perfor-

mance. Such an important observation drove me to delve into the optimization of cellular

resource utilization described below.

1.2 Exposing the Visibility: Profiling Smartphone Apps for Identifying

Inefficient Resource Usage

From cellular customers’ perspective, as mentioned before, there remain far more chal-

lenges associated with mobile applications compared to their desktop counterparts, leading

to smartphone applications that are not cellular-friendly, i.e., their radio channel utilization

and handset energy consumption are inefficient because of a lack of transparency in the
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lower-layer protocol behavior. To fill such a gap, we developed a novel data analysis and

visualization framework called ARO (mobile Application Resource Optimizer) [6]. ARO

is the first tool that exposes the cross-layer interaction for layers ranging from higher lay-

ers such as user input and application semantics down to the lower protocol layers such as

HTTP, transport, and very importantly radio resources. Correlating behaviors of all these

layers helps reveal inefficient resource usage due to a lack of transparency in the lower-layer

protocol behavior, leading to suggestions for improvement.

One key observation is that, from applications’ perspective, given the aforementioned

static nature of the current resource management policy, the low resource efficiency in

cellular networks is fundamentally attributed to short traffic bursts carrying small amount

of user data while interleaved with long idle periods during which a handset keeps the radio

channel occupied. ARO employs a novel algorithm to identify them and to distinguish

which factor triggers each such burst, e.g., user input, TCP loss, or application delay, by

synthesizing the cross-layer analysis results. Discovering such triggering factors is crucial

for understanding the root cause of inefficient resource utilization.

ARO revealed that many popular applications (Pandora, Facebook, Fox News etc.) have

significant resource utilization inefficiencies that are previously unknown. For example, for

Pandora, a popular music streaming application on smartphones, due to the poor interaction

between the RRC state machine and the application’s data transfer scheduling mechanism,

46% of its radio energy is spent on periodic audience measurements that account for only

0.2% of received user data. Improving the data transfer scheduling mechanism can reduce

its radio energy consumption by 30%.
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1.3 Enabling the Cooperation: Optimizing Radio Resource Usage Through

Adaptive Resource Release

We have investigated the resource optimization problem from perspectives of the net-

work and customer applications, respectively. As mentioned before, analyses from both

sides indicate the resource inefficiency origins from the release of radio resources con-

trolled by static inactivity timers. The timeout value itself, known as the tail time, can last

for more than 10 seconds, leading to significant waste in radio resources of the cellular

network and battery energy of user handsets. Naively decreasing the timer is usually not an

option because it may significantly increase the signaling load.

Therefore, to eliminate tail times, we need to change the way resources are released

from statically to adaptively. This requires the cooperation between the network and hand-

sets, since the latter have the best knowledge of application traffic patterns determining re-

source allocation and release. Towards this goal, we proposed Tail Optimization Protocol

(TOP), a cooperative resource management protocol that eliminates tail times [7]. Intu-

itively, applications can often accurately predict a long idle time. Therefore a handset can

notify the network on such an imminent tail, allowing the network to immediately release

resources. However, doing so aggressively may incur unacceptably high signaling load.

TOP employs a set of novel algorithms to address this key challenge by (i) letting individual

applications predict tails and (ii) designing an efficient and effective scheduling algorithm

that coordinates tail prediction of concurrent applications. The handset requests for imme-

diate resource release only when the combined idle time prediction across all applications

is long.

Interestingly, we found that the basic building block for realizing TOP is already sup-

ported by most cellular networks. It is a recent proposal of 3GPP specification called fast

dormancy [8], a mechanism for a handset to request for an immediate RRC state demotion.

TOP thus requires no change to the cellular infrastructure or the handset hardware given
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that fast dormancy is widely deployed. The experimental results based on real traces of a

commercial cellular network showed that with reasonable prediction accuracy, TOP saves

the overall radio energy (17%) and radio resources (14%) by reducing tail times by up to

60%. For applications such as multimedia streaming, TOP can achieve more significant

savings of radio energy (60%) and radio resources (50%).

1.4 Reducing the Footprint: Eliminate Redundant Data Transfers in

Cellular Data Networks

Another important topic in cellular networks is to reduce the amount of data transferred

without compromising the application semantics. Compared to wired and Wi-Fi networks,

this issue is particularly critical in cellular networks. From carriers’ perspective, cellular

networks operate under severe resource constraints. Even a small reduction of the total

traffic volume by 1% leads to savings of tens of millions of dollars for carriers [2]. The

benefits are also significant from customers’ perspective, as fewer network data transfers

cut cellular bills, improve user experience, and reduce handset energy consumption.

There are multiple ways to achieve this goal, such as caching, compression, and offload-

ing transfers to Wi-Fi. We have performed the first network-wide study of HTTP caching

on smartphones, because HTTP traffic generated by mobile browsers and smartphone ap-

plications far exceeds any other type of traffic. Also caching on handsets (compared to

caching in the network) is particularly important as it eliminates all network-related over-

heads.

Our study focuses on redundant transfers caused by inefficient handset web caching

implementation [9]. We used a dataset collected from 3 million smartphone users of a

commercial cellular network, as well as another five-month-long trace contributed by 20

smartphone users at the University of Michigan. Surprisingly, our findings suggest that

redundant transfers contribute 18% and 20% of the total HTTP traffic volume in the two
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datasets. Even at the scope of all cellular data traffic, they are responsible for 17% of the

bytes and 9% of the radio resource utilization. As confirmed by our local experiments, most

of such redundant transfers are caused by the smartphone web caching implementation

that does not fully support or strictly follow the protocol specification, or by developers

not fully utilizing the caching support provided by the libraries. Our finding suggested

that improving the cache implementation on handsets will bring considerable reduction of

network traffic volume, cellular resource consumption, handset energy consumption, and

user-perceived latency, benefiting both cellular carriers and customers.

1.5 Thesis Organization

This dissertation is structured as follows. Chapter II provides sufficient background

of resource allocation mechanism in cellular networks. In Chapter III, we describe four

tools for cellular network analysis: the RRC state machine inference, the trace-driven RRC

state inference, the radio power model, and the methodology for quantifying resource con-

sumption. These analyses will be used in the rest of the dissertation as building blocks.

The goal of Chapter IV is to understand the state-of-the-art of cellular resource utilization

by performing network-wide measurement for a commercial cellular network. Then in

Chapter V, we describe our approach of profiling mobile applications to reveal their ineffi-

cient resource usage due to potentially poor interactions among multiple layers. Motivated

by the observations of Chapter IV and Chapter V, we propose a novel cellular resource

management framework that enables adaptive resource release in Chapter VI. Next, in

Chapter VII, we present the first network-wide study of HTTP caching on smartphones,

to quantify the network data redundancy caused by disparities between protocol specifica-

tion and implementation. We discuss related work in Chapter VIII before concluding the

thesis in Chapter IX.
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CHAPTER II

Background

This chapter provides sufficient background of resource allocation mechanism in cellu-

lar networks.

To efficiently utilize the limited resources, cellular networks employ a resource man-

agement policy distinguishing them from wired and Wi-Fi networks. In particular, there

exists a radio resource control (RRC) state machine [5] that determines radio resource usage

based on application traffic patterns, affecting device energy consumption and user expe-

rience. Similar RRC state machines exist in different types of cellular networks such as

UMTS (Universal Mobile Telecommunications System) [5], EvDO (Evolution-Data Op-

timized) [10] and 4G LTE (3GPP Long Term Evolution) networks [11] although the de-

tailed state transition models may differ. The description below focuses on the popular 3G

UMTS networks (§2.1), which was the state-of-the-art cellular access technology during

the course of my research (2008 to 2012). We briefly discuss the 4G LTE networks in §2.2.

To highlight the uniqueness and the impact of the cellular resource management policy, we

measure and compare the radio energy overhead of 3G and Wi-Fi for small data transfers

in §2.3. We present the key tradeoffs of resource management in cellular networks in §2.4,

and describe a new feature called fast dormancy, a mechanism allowing a handset to bypass

the default resource management policy, in §2.5.
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Figure 2.1: The UMTS architecture

2.1 Radio Resource Management in 3G UMTS Networks

We first give a brief overview of the 3G UMTS networks, then describe how radio

resources are managed in UMTS networks.

2.1.1 The UMTS Network

As illustrated in Figure 2.1, the UMTS network consists of three subsystems: User

Equipments (UE, or handsets), UMTS Terrestrial Radio Access Network (UTRAN), and

the Core Network (CN). UEs are essentially mobile handsets carried by end users. We use

the term “handset” instead of “UE” throughout this dissertation.

The UTRAN allows connectivity between a handset and the CN. It consists of two

components: base stations, called Node-Bs, and Radio Network Controllers (RNC), which

control multiple Node-Bs. Most UTRAN features such as packet scheduling, radio resource

control, and handover control are implemented at the RNC. The centralized CN is the

backbone of the cellular network. In particular the GGSN (Gateway GPRS Support Node)

within the CN serves as a gateway hiding UMTS internal infrastructures from the external

network.
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2.1.2 The RRC States

In the context of UMTS, the radio resource refers to WCDMA codes that are potential

bottleneck resources of the network. To efficiently utilize the limited radio resources, the

UMTS radio resource control (RRC) protocol introduces a state machine associated with

each handset. There are typically three RRC states as described below [12, 3].

IDLE. This is the default state when a handset is turned on. The handset has not yet

established an RRC connection with the RNC, thus no radio resource is allocated, and

the handset cannot transfer any user data (as opposed to control data). The only allowed

message is control messages sent through a shared control channel for initializing the RRC

connection. Some UMTS networks support a hibernating state called CELL PCH. It is

similar to IDLE but the state promotion delay from CELL PCH is shorter.

CELL DCH. The RRC connection is established and a handset is usually allocated

dedicated transport channels in both downlink (DL, RNC to handset) and uplink (UL, hand-

set to RNC) direction. This state allows a handset to fully utilize radio resources for user

data transmission. We refer to CELL DCH as DCH henceforth.

A handset can access HSDPA/HSUPA (High Speed Downlink/Uplink Packet Access)

mode, if supported by the infrastructure, at DCH state. For HSDPA, the high speed transport

channel is not dedicated, but shared by a limited number (e.g., 32) of users [3]. Further,

when a large number of handsets are in DCH state, the radio resources may be exhausted

due to the lack of channelization codes in the cell. Then some handsets have to use low-

speed shared channels although their RRC states are still DCH.

CELL FACH. The RRC connection is established but there is no dedicated channel

allocated to a handset. Instead, the handset can only transmit user data through shared low-

speed channels that are typically less than 15kbps. We refer to CELL FACH as FACH from

this point on. FACH is designed for applications requiring very low data throughput rate. It

consumes much less radio resources than DCH does.

RRC states impact a handset’s energy consumption. A handset at IDLE consumes al-
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most no energy from its radio interface. The radio power consumption for DCH is 50%

to 100% higher than that for FACH (Table 3.1). While within the same state, the radio

power is fairly stable regardless of the data throughput when the signal strength is stable.

Further, the RRC state machine is maintained at both the handset and the RNC. The two

peer entities are always synchronized via control channels except during transient and error

situations. Also note that both the downlink (DL) and the uplink (UL) use the same state

machine.

Some UMTS networks support a hibernating state called CELL PCH. It is similar to

IDLE but the state promotion delay from CELL PCH is shorter [3].

2.1.3 State Transitions

In the RRC state machine, there are two types of state transitions. State promotions, in-

cluding IDLE→FACH, IDLE→DCH, and FACH→DCH, switch from a state with lower ra-

dio resource and handset energy utilization to another state consuming more resources and

handset energy. State demotions, consisting of DCH→FACH, FACH→IDLE, and DCH→IDLE,

go in the reverse direction. Depending on the starting state, a state promotion is triggered

by either any user data transmission activity, if the handset is at IDLE, or the per-handset

queue size, called Radio Link Controller (RLC) buffer size, exceeding a threshold in either

direction, if the handset is at FACH.

The state demotions are triggered by two inactivity timers maintained by the RNC.

We denote the DCH→FACH timer as α, and the FACH→IDLE timer as β. At DCH, the

RNC resets the α timer to T seconds, a fixed threshold, whenever it observes any UL/DL

data frame. If there is no user data transmission activity for T seconds, the α timer times

out and the state is demoted to FACH. A similar scheme is used for the β timer for the

FACH→IDLE demotion. We use the notions of α and β throughout the dissertation. Note

that such a timeout mechanism is widely used in computer and networking systems in order

to save limited resources. Examples include suspending a system component (e.g., disk) or
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Figure 2.2: The RRC state machine for
the 3G UMTS network of Carrier 1

Figure 2.3: The RRC state machine for
the 3G UMTS network of Carrier 2

closing a TCP connection after an idle time period. They however incur different tradeoffs

that need to be analyzed and optimized separately.

Promotion Delays and Tail Times distinguish cellular networks from other types of

access networks. An RRC state promotion incurs a long latency (up to several seconds)

during which tens of control messages are exchanged between a handset and the RNC for

resource allocation. A large number of state promotions incur high signaling overhead as

they increase processing load at the RNC and worsen user experience [13]. In contrast,

state demotions finish much faster, but they incur tail times that cause significant waste of

resources [14, 5, 7]. A tail is the idle time period matching the inactivity timer value be-

fore a state demotion. During a tail time, a handset simply waits for the inactivity timer to

expire, but it still occupies transmission channels and WCDMA codes, and its radio power

consumption is kept at the corresponding level of the state. Due to the tail time, trans-

mitting even small amount of data can cause significant radio energy and radio resource

consumption.

Figures 2.2 and 2.3 depict the state machine models for two large UMTS carriers in the

U.S., Carrier 1 and Carrier 2, respectively, based on our inference methodology described

in §3.1. We will refer to these two carriers in later chapters. Their difference naturally

introduces the problem of seeking the optimal state machine configuration to better balance

radio resource utilization and performance. We compare both carriers in §4.4.4.
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2.2 Radio Resource Management in 4G LTE Networks

We describe the RRC state machine in 4G LTE networks [15, 16]. As shown in Fig-

ure 2.4, it has a similar concept but differs from the 3G UMTS RRC state machine in two

ways: (i) there exist only two RRC states: RRC CONNECTED and RRC IDLE, (ii) within

RRC CONNECTED, there are three microstates: Continuous Reception, Short DRX, and

Long DRX. DRX stands for “discontinuous reception”, a new feature that allows a handset

to periodically wake up to check the downlink transmission channel, thus reducing its ra-

dio energy consumption. Specifically, as shown in Figure 2.5, the channel access in DRX

mode consists of consecutive DRX cycles. Time slots in each DRX cycle belong to either

an on duration or a sleep duration (unshaded slots in Figure 2.5). In an on duration, the

handset monitors the Physical Downlink Control Channel (PDCCH) for any incoming data,

while the handset simply hibernates in the much longer sleep duration, in order to save the

energy consumed by the radio interface. The difference between Short DRX and Long

DRX is the length of the sleep duration in each DRX cycle. Clearly, DRX incurs tradeoffs

between the latency and the energy consumption. Increasing the sleep duration saves the

radio energy but worsens the latency as the handset wakes up less frequently to check the
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downlink channel. UMTS 3G does not use DRX at the DCH or FACH state so the handset

has to continuously monitor the downlink channel. But DRX is used at the RRC IDLE state

for both 3G UMTS and 4G LTE.

For state transitions, the promotion from RRC IDLE to RRC CONNECTED is triggered by

an uplink or downlink packet of any size, which also triggers transitions from the two DRX

modes to the Continuous Reception mode within the three microstates. Demotions from

RRC CONNECTED to RRC IDLE, as well as from Continuous Reception to Short DRX, then

to the Long DRX mode are controlled by three inactivity timers. It is important to note

that in 4G LTE networks, both the tail time caused by the inactivity timer from RRC IDLE

to RRC CONNECTED, and the promotion overhead from RRC CONNECTED to RRC IDLE still

exist. Both factors incur the fundamental tradeoffs among the radio resource utilization,

the handset radio energy consumption, and the signaling overhead to be discussed in §2.4.

Please refer to our work [11] for more detailed discussion of resource management in 4G

LTE networks.

2.3 Comparing Resource Consumption: 3G vs. Wi-Fi

To highlight the uniqueness and the impact of the cellular resource management pol-

icy, we measure and compare the radio energy overhead of 3G and Wi-Fi for small data

transfers, on which the resource impact of the RRC state machines is particularly high.

For 3G (we use Carrier 1’s UMTS network, see Figure 2.2), we assume the handset is
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on IDLE before transmitting a burst. Therefore the total radio energy consists of four parts:

EPromo (the IDLE→DCH promotion energy), E3G-Data (the energy for transferring the actual

data), EDCH-Tail (the DCH tail energy), and EFACH-Tail (the FACH tail energy). For Wi-Fi, the

radio energy consists of EWiFi-Data and EWiFi-Tail, which are the energy for the data and the

short tail, respectively. Our measurement on Google Nexus One using a power monitor [17]

indicates that the Wi-Fi energy consumption for a data transfer is largely proportional to

the transfer size when the signal is stable. The radio power for Wi-Fi is lower than that for

3G, and Wi-Fi incurs no observable promotion delay but a much shorter tail time around

250 ms. Similar observations were reported on a Nokia N95 phone in [14].

We measured radio energy consumption for small data transfers by performing con-

trolled local experiments. We set up an HTTP server hosting two small objects A and B,

whose sizes are 1KB and 9KB, respectively. Then we used a Google Nexus One phone

to fetch both objects for 20 times, making sure no caching. Meanwhile, we recorded both

packet traces and power traces (using a Monsoon power monitor [17]) so that the energy

consumption of each component (promotion, data and tail) can be accurately computed by

correlating power traces with packet traces. All experiments were performed when the sig-

nal strength was good and stable. To determine the radio interface power, we tried to keep

other device components consuming constant power (e.g., keeping the LCD at the same

brightness level). Then the radio interface power, which contributes at least 50% of the

total handset power [18], can be approximated by subtracting the constant power baseline

(420 mW) from the overall power reported by the power monitor.

Figure 2.6 plots the energy breakdown. For transferring Object A (Object B), 97.0%

(94.3%) of radio energy belongs to EPromo, EFACH-Tail, or EDCH-Tail. As indicated by the

three short bars on the right of Figure 2.6, the Wi-Fi energy consumption is significantly

less than that for 3G, because (i) Wi-Fi has smaller RTT and higher data rate than 3G, thus

the data transfer time for Wi-Fi is much shorter, (ii) the Wi-Fi radio power (300 mW) is

also smaller than 3G (650 mW), and (iii) Wi-Fi has a much shorter tail time (250 ms) and
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Figure 2.6: Radio energy breakdown for transmitting a small burst. A and B are two small
HTTP objects of 1KB and 9KB, respectively.

negligible state promotion delay. In our experiments, E3G-Data is 22 (31) times of EWiFi-Data

for transferring Object A (B). When promotion and tail energy are taken into account, the

disparity can be even as high as 140 times. All three factors result in a 22x (31x) energy

difference between 3G and Wi-Fi for transferring Object A (Object B). The disparity is

as large as 140x if promotion and tail energy are taken into account. The measurement

results indicate that the state promotion and tail time incur significant energy overhead for

transmitting a small burst in cellular networks.

2.4 Tradeoffs in Optimizing Resource Allocation

The RRC state machine introduces tradeoffs among radio resource utilization, handset

energy consumption, end user experience, and management overheads at the RNC. We need

to quantify these factors to analyze the tradeoff. Given a cellular trace and a state machine

configurationC, we compute three metrics to characterize the above factors. Previous work

either consider only one factor [19, 20] or focus on other metrics (e.g., dropping rate due to

congestion [21] and web page response time [22]), using analytical models. We detail our

methodology for computing the three metrics in §3.4.

• The DCH state occupation time, denoted by D(C), quantifies the overall radio re-

sources consumed by handsets on dedicated channels in DCH state. We ignore the

relatively low radio resources allocated for shared low-speed channels on FACH.
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Table 2.1: Optimize radio resources: the key tradeoff
Increase α or β timers Decrease α or β timers

∆D increases ∆D decreases
Increase tail time Decrease tail time

Waste radio resources Save radio resources
∆S decreases ∆S increases

Reduce state promotions Increase state promotions
Reduce RNC overhead Increase RNC overhead

Improve user experiences Degrade user experiences
∆E increases ∆E decreases

Waste handset radio energy Save handset radio energy

• The signaling overhead, denoted by S(C), is the total delay of IDLE→DCH, IDLE→FACH,

and FACH→DCH promotions. S(C) quantifies the overhead brought by state promo-

tions that worsen user experience and increase the management overhead at the RNC.

We ignore the state demotion overhead as it is significantly smaller compared with

the state promotion overhead.

• The energy consumption, denoted by E(C), is the energy consumed by the cellular

radio interface whose radio power contributes 1/3 to 1/2 of the overall handset power

during the normal workload [6].

We are interested in relative changes ofD, S, E when we switch to a new state machine

using the same trace. Let C be the default state machine used as the comparison baseline,

and let C ′ be a new state machine configuration. The relative change of D, denoted as ∆D,

is computed by ∆D(C ′) = (D(C ′) − D(C))/D(C). We have similar definitions for ∆S

and ∆E.

As mentioned before, ∆E quantifies the relative change of the energy consumed by

the handset radio interface. We are also interested in the relative change of the overall

handset energy, denoted by ∆Eall. Note that ∆Eall is slightly different from ∆E when

∆S 6= 0. In that case, the total duration of a trace changes by |∆S| due to the increased

(if ∆S > 0) or decreased (if ∆S < 0) promotion delay. Therefore the total handset

energy consumption for the new trace should include (exclude) the energy consumed by
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the non-radio components during such additional (removed) periods of state promotions

whose total duration is ∆S (the radio energy consumed during ∆S is already included in

∆E). However, since in most cases ∆S is much shorter than the total trace duration, ∆E

is a good estimation of ∆Eall.

As we shall see in Chapter IV, the key tradeoff expressed in our notations is that, for any

state machine setting, increasing ∆S causes both ∆D and ∆E to decrease (there may exist

exceptions when ∆S is too large). In other words, if more state promotions are allowed,

then we can save more radio resources and handset energy. Ideally, we want to find a state

machine configuration C ′ such that ∆D(C ′) and ∆E(C ′) are significantly negative, while

∆S(C ′) is reasonably small. This important tradeoff is summarized in Table 2.1.

2.5 Fast Dormancy

The fundamental reason why inactivity timers are necessary is that the network has

no easy way of predicting the network idle time of a handset. Therefore the RNC con-

servatively appends a tail to every network usage period. This naturally gives rise to the

idea of letting mobile applications determine the end of a network usage period since they

can make use of application knowledge useful for predicting network activities. Once an

imminent tail is predicted, a handset notifies the RNC, which then immediately releases

allocated resources.

Based on this simple intuition, a feature called fast dormancy has been proposed to be

included in 3GPP Release 7 [23] and Release 8 [24]. The handset sends an RRC message,

which we call the TTT message, to the RNC through the control channel. Upon the reception

of a TTT message, the RNC releases the RRC connection and lets the handset go to IDLE (or

to a hibernating state that has lower but still non-trivial promotion delay). This feature is

supported by several handsets [24]. To the best of our knowledge, no smartphone applica-

tion uses fast dormancy in practice, partly due to a lack of the OS support that provides a

simple programming interface.
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Figure 2.7: Shorter tail times of a Nexus One phone using fast dormancy. A single UDP
packet is sent at t = 26.8 sec.

However, based on measuring the device power consumption, we do observe that a

few phones adopt fast dormancy in an application-agnostic manner: the handset goes to

IDLE (or to the hibernating CELL PCH state with a lower promotion delay) faster than

other phones do for the same carrier. In other words, they use a shorter inactivity timer

controlled by the device in order to lengthen the battery life. The disadvantage of such

an approach is well understood [5, 13]: the additionally incurred state promotions may

introduce significant signaling overhead at the RNC and may worsen user experience.

For example, we investigated four handsets using Carrier 1’s UMTS network (Ta-

ble 3.1): HTC TyTN II, Sierra 3G Air card, and two Google Nexus One phones (A and

B). For TyTn II, the air card, and Nexus One A, their state demotions are solely controlled

by inactivity timers. For Nexus One B, the measured α and β timers are 5 sec and only 3

sec (shorter than the default 12-sec β timer), respectively. Such an observation is further

validated by measuring the power of Nexus One B (Figure 2.7). It is highly likely that

it employs fast dormancy to release radio resources earlier to improve its battery life. In

contrast, Figure 3.7 shows the default tail time (of the same carrier) on an HTC TyTn II

phone that does not use fast dormancy. Both Figure 2.7 and Figure 3.7 are measured using

a power monitor [17]. We detail the measurement methodology in §3.1.3.

We believe that currently fast dormancy is controlled by the upgradable radio image
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that distinguishes the two Nexus One phones (Nexus One A and B are identical except

for the radio image version). Again, the incurred drawbacks of fast dormancy are extra

state promotions causing additional signaling overhead and potentially worsen user expe-

rience [13, 5].
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CHAPTER III

Tools for Cellular Network Analysis

In this chapter, we describe four tools for cellular network analysis: the RRC state ma-

chine inference (§3.1), the trace-driven RRC state inference (§3.2), the radio power model

(§3.3), and the methodology for quantifying cellular resource consumption (§3.4). They

are the necessary methodologies for carrying out the experimental work or the smartphone

traffic analysis in the rest of the dissertation. Specifically, we have made the following

contributions in this chapter.

• In §3.1, we propose a novel inference technique for the RRC state machine model

purely based on probing from the user device. It systematically discovers the state

transitions by strategically adjusting the packet dynamics. We apply our algorithm

to two UMTS carriers and validated its accuracy by measuring the device power

consumption.

• In §3.2, we present a methodology that accurately infers RRC states from packet

traces collected on a handset. The inference technique is necessary due to lacking of

an interface for accessing RRC states directly from the handset hardware.

• In §3.3, we describe a simple but robust power model to estimate the UMTS radio

energy consumption.
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• In §3.4, we design a novel methodology, which leverages the techniques proposed

in §3.2 and §3.3, for quantifying the resource consumption for cellular traces.

3.1 RRC State Machine Inference

We propose an end-host based probing technique for inferring the cellular state ma-

chine, which we validate using power measurements. Accurate inference of the state ma-

chine and its parameters is the first necessary step towards characterizing and improving

the RRC state machine. The probing technique is based on 3G UMTS network, but it can

be easily generalized to other types cellular networks such as 4G LTE.

3.1.1 Inference Methodology

We present our methodology for inferring the RRC state machine and its parameters.

3.1.1.1 Basic Assumptions

We make the following assumptions for the inference algorithm. (i) There are at most

three states: IDLE, FACH, and DCH. DCH is the state allowing high data rate transfer. (ii)

The time granularity for inactivity timers is assumed to be seconds. Our algorithms can

easily adapt to finer granularities. (iii) The state promotion delay is significantly longer

than (at least two times as) a normal RTT for both DCH and FACH (less than 300 ms

based on our measurements). This is reasonable due to the promotion overhead explained

earlier. (iv) We roughly know the range of RLC buffer thresholds (64B–1KB) that trigger

the FACH→DCH promotion. We detail our methodology below.

3.1.1.2 State Promotion and Demotion Inference

State promotion inference determines one of the two promotion procedures adopted

by UMTS: P1: IDLE→FACH→DCH, or P2: IDLE→DCH. Algorithm 1 illustrates how
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Algorithm 1 State promotion inference
1: Keep the handset on IDLE.
2: The handset sends min bytes. Server echoes min bytes.
3: The handset sends max bytes. Server echoes min bytes.
4: The handset records the RTT ∆t for Step 3.
5: Report P1 iff ∆t� normal RTT. Otherwise report P2.

we distinguish between P1 and P2, where min and max denote RLC buffer sizes that

does not trigger, and does trigger, the FACH→DCH promotion, respectively. Note that

IDLE→DCH or IDLE→FACH always happens regardless of the RLC buffer size. The idea

is to distinguish P1 and P2 by detecting the presence of the FACH→DCH promotion. We

set min and max to 28 bytes (an empty UDP packet plus an IP header) and 1K bytes,

respectively. If P1 holds, then the state is promoted to FACH after Step 2, and then further

promoted to DCH at Step 3. Thus ∆t includes an additional FACH→DCH promotion delay.

Otherwise, for P2, ∆t does not include the promotion delay since the state is already DCH

after Step 2.

Algorithm 2 State demotion inference
1: for n = 0 to 30 do
2: The handset sends max bytes. Server echoes min bytes.
3: The handset sleeps for n sec.
4: The handset sends min bytes. Server echoes min bytes.
5: The handset records the RTT ∆t1(i) for Step 4.
6: end for
7: for n = 0 to 30 do
8: The handset sends max bytes. Server echoes min bytes
9: The handset sleeps for n sec.

10: The handset sends max bytes. Server echoes min bytes.
11: The handset records the RTT ∆t2(i) for Step 10.
12: end for
13: Report D1 iff ∆t1(·) and ∆t2(·) are similar, else report D2.

State demotion inference determines whether UMTS uses D1: DCH→IDLE or D2:

DCH→FACH→IDLE. The inference method is shown in Algorithm 2, which consists of

two experiments. The first experiment (Steps 1 to 6) comprises of 30 runs. In each run, the

handset goes to DCH by sending max bytes (Step 2), sleeps for n seconds (Step 3), then
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sends min bytes (Step 4). Recall that min and max denote RLC buffer sizes that does not

trigger, and does trigger, the FACH→DCH promotion, respectively. By increasing n from

0 to 30, we fully exercise all the states experienced by the handset at the beginning of Step

4 due to the inactivity timer effects. The second experiment (Step 7 to 12) is similar to the

first one except that after Step 10, the handset always promotes to DCH. In contrast, after

Step 4, if there exists a DCH→FACH demotion, the handset will be in FACH. Therefore,

for D1 the observed RTTs for two experiments, ∆t1(0..30) and ∆t2(0..30), will be similar.

On the other hand, for D2, i.e., the state is demoted to FACH (the α timer, see §2.1.3), then

back to IDLE (the β timer), then for bαc < i ≤ bα+βc, the difference between ∆t1(i) and

∆t2(i) is roughly the FACH→DCH promotion delay.

3.1.1.3 Parameter Inference

Given the process of inferring the state transitions, it is easy to infer related parameters.

The inactivity timers can be directly obtained from ∆t1(·) and ∆t2(·) computed by Algo-

rithm 2. For the case where the demotion is DCH→FACH→IDLE, we can deduce α and β

from the fact that ∆t1(0...bα + βc) are smaller than ∆t1(dα + βe...30), and ∆t2(0...bαc)

are smaller than ∆t2(dαe...30). This is because in the first experiment in Algorithm 2, a

state promotion (IDLE→FACH or IDLE→DCH) will not happen until n ≥ dα + βe, while

in the second experiment, a state promotion from IDLE or FACH happens when n ≥ dαe.

Similarly, for the case where the demotion is DCH→IDLE, let the only inactivity timer be

γ. Then we will observe that ∆t1(0...bγc) are much smaller than ∆t1(dγe...30).

Promotion Delay. To infer the promotion delay X→Y, we measure the entire RTT

including the promotion, then subtract from it the normal RTT (i.e., the RTT not including

the promotion) on state Y. The delays are not constant (the variation can be as high as

50%) because the control channel rate, and the workload of the RNC, which processes

state promotions, may vary.

Usually a state promotion is triggered by an uplink packet. But it is worth mention-

24



ing that an IDLE→DCH/FACH promotion triggered by a downlink packet is usually longer

than that triggered by an uplink packet. This is because when a downlink packet is to

be received, it may get delayed due to paging. In fact, even at IDLE, a handset periodi-

cally wakes up to listen for incoming packets on the paging channel. If a downlink packet

happens to arrive between two paging occasions, it will be delayed until the next paging

occasion. In practice, we observe via power monitor that the paging cycle length is 2.56

sec or 1.28 sec, depending on the configuration of the carrier.

RLC Buffer Thresholds are essential in determining the promotions from FACH to

DCH, as described in §2.1.3. We measure the RLC buffer thresholds for uplink (UL) and

downlink (DL) separately, by performing binary search for the packet size that exactly

triggers the FACH→DCH promotion, using the promotion delay as an indicator.

RLC Buffer Consumption Time quantifies how fast the RLC buffer is cleared after

it is filled with data at FACH state. It depends on channel throughput at FACH since the

RLC buffer is not emptied until all data in the buffer are transmitted [3]. Considering RLC

buffer consumption time enables the state inference algorithm (§3.2) to perform more fine-

grained simulation of RLC buffer dynamics to more precisely capture state promotions,

thus improving the inference accuracy.

We infer the RLC buffer consumption time by sending two packets separated by some

delay. First, we send a packet of x bytes at FACH with x smaller than the RLC buffer

threshold so it never triggers a FACH→DCH promotion. After a delay for y milliseconds,

another packet of z bytes is sent in the same direction. The value of z is chosen in a way

that z < the RLC buffer threshold < x + z. Then observing a FACH→DCH promotion

suggests that the RLC buffer is not yet emptied when the second packet arrives at the

buffer, causing the RLC buffer size to exceed the threshold. In other words, at FACH state,

the RLC buffer consumption time of x bytes is longer than y milliseconds. On the other

hand, not observing a FACH→DCH promotion implies the the RLC buffer consumption

time is at most y milliseconds.
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Figure 3.1: State machine inference results for Carrier 1
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Figure 3.2: State machine inference results for Carrier 2

3.1.2 Results of State Machine Inference

We present the inference results for state machines used by two large UMTS carriers:

Carrier 1 and 2 (introduced in §2.1.3). For each carrier, we repeat Algorithm 1 and Algo-

rithm 2 for three times, ensuring that in each experiment (i) the server does not experience

a timeout; (ii) in tcpdump trace, we never observe other user data transmission that may

trigger a state transition; (iii) the 3G connection is never dropped. The entire experiment is

discarded if any of these conditions is violated.

For the state promotion inference, the normal RTTs for Carrier 1 and 2 are less than 0.3

sec, and the measured ∆t values in Algorithm 1 are 0.2 sec for Carrier 1, and 1.5 sec for

Carrier 2, for all three trials. Based on Algorithm 1, we conclude that the promotion proce-

dures for Carrier 1 and Carrier 2 are IDLE→DCH and IDLE→FACH→DCH, respectively.

For the state demotion inference, we notice the qualitative difference between ∆t1(5...16)

in Figure 3.1(a) and ∆t2(5...16) in Figure 3.1(b), indicating that the state demotion pro-
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Table 3.1: Inferred parameters for two carriers.
Inactivity timer Carrier 1 Carrier 2
α: DCH→FACH 5 sec 6 sec
β: FACH→IDLE 12 sec 4 sec

Average promotion delay
Carrier 1 Carrier 2(triggered by UL packet)

IDLE→FACH N/A 0.6 sec
IDLE→DCH 2.0 sec N/A
FACH→DCH 1.5 sec 1.3 sec

RLC Buffer threshold Carrier 1 Carrier 2
FACH→DCH(UL) 540 B 151 B
FACH→DCH(DL) 475 B 119 B

Average State radio power∗ Carrier 1 Carrier 2
DCH/FACH/IDLE 800/460/0 mW 600/400/0 mW

∗ Tested on an HTC TyTn II smartphone. See Table 3.3 for radio
power measurement results for more devices.

cedure for Carrier 1 is DCH→FACH→IDLE. Similarly, Figure 3.2(a) and Figure 3.2(b)

imply that Carrier 2 also uses DCH→FACH→IDLE, due to the obvious difference between

∆t1(6..9) and ∆t2(6..9).

We note that for Carrier 1, ∆t1(17...30) and ∆t2(17...30) are roughly the same, because

in Algorithm 2, for 17 ≤ n ≤ 30, either sending min bytes (Step 4) or sending max bytes

(Step 10) triggers an IDLE→DCH promotion, which is the only promotion transition for

Carrier 1. In contrast, for Carrier 2, ∆t1(10...30) is smaller than ∆t2(10...30). Carrier

2 may perform two types of promotions depending on the RLC buffer size, therefore for

10 ≤ n ≤ 30 in Algorithm 2, sending min bytes in Step 4 and sending max bytes in Step

10 will trigger IDLE→FACH and IDLE→FACH→DCH, respectively, resulting in different

promotion delays. This observation does not affect the inference results of Algorithm 2 for

either carrier.

Given the ∆t1(·) and ∆t2(·) values computed by Algorithm 2, it is easy to infer α and β

by following the logic described in §3.1.1. The inference results are (α, β) = (5sec, 12sec)

for Carrier 1 and (α, β) = (6sec, 4sec) for Carrier 2. To infer the RLC buffer thresholds,
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we repeat the experiments 30 times and summarize the results in Table 3.11.

We further studied the following fine-grained characteristics of Carrier 1’s RRC state

machine.

1. Variation of RLC buffer thresholds. As shown in Figure 3.3 where the Y axis

corresponds to the probability of observing a FACH→DCH promotion when a packet

of x bytes is sent. We observe that for DL, the threshold is fixed to 475 bytes while

the RLC buffer threshold for UL varies from 500 to 560 bytes. Such a difference is

likely due to the disparity between the UL and DL transport channels used by the

FACH state [25].

2. RLC Buffer Consumption Time is measured by using the method described in §3.1.1.3.

We fix z at 500 bytes and 475 bytes for uplink and downlink, respectively, according

to Figure 3.3. Figure 3.4 shows the RLC buffer consumption time for uplink. For

each packet size x (X axis), we vary the delay y (Y axis) at a granularity of 25 ms,
1Results in Table 3.1 were measured in November 2009.
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and perform aforementioned test for each pair of (x, y) for 20 times. The error bars in

Figure 3.4 cover a range of delays (y values) for which we probabilistically observe

a promotion. The results for downlink are shown in Figure 3.5. Our results confirm

previous measurements that at FACH, the uplink transport channel is much slower

than the downlink channel [25].

By considering RLC buffer consumption time, the trace-driven RRC state simulation

algorithm (to be described in §3.2) performs more fine-grained simulation of RLC

buffer dynamics (both uplink and downlink) to more precisely capture state promo-

tions, because sometimes a FACH→DCH promotion is triggered by multiple small

packets that incrementally fill up the RLC buffer, instead of a single large packet with

its size exceeding the RLC buffer threshold.

3. Low traffic volume not triggering timers to reset. We also found that for Carrier

1, the DCH→FACH timer is not reset when a handset has very little data to transfer

for both directions. Specifically, at DCH, a packet P does not reset the timer if both

uplink and downlink have transferred no more than 320 bytes (including P ) within

the past 300 ms. We believe the intent of such a design, which is specific to Carrier

1 and is not documented by literature [3, 26, 25], is to save radio resources in DCH

when there is small traffic demand by a handset. In the trace-driven simulation (§3.2),

not considering this factor leads to overestimation of the DCH occupation time.

3.1.2.1 Inference Results on 2G Networks

For 2G (GPRS/EDGE) networks, there exists a similar RRC state machine model.

The three RRC states are “IDLE”, “CELL SHARED”, and “CELL DEDICATED” [27],

corresponding to IDLE, FACH, and DCH in the 3G case, respectively. We applied our

inference methodology (using a smaller increment of n in Algorithm 2) on Carrier 2’s

2G network, and show the inference results in Figure 3.6. We observe that the inactiv-

ity timers (1 sec) are much shorter, therefore resulting in better efficiency of radio re-
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Figure 3.6: The RRC state machine for the 2G GPRS/EDGE network of Carrier 2

source utilization and handset energy consumption. The negative impact of short timers

is more frequent state transitions. The state promotion delays of IDLE→DEDICATED and

SHARED→DEDICATED are both 0.5 sec.

3.1.3 Validation using Energy Consumption

As described in §2.1.2, the handset radio energy consumption differs for each state, a

property we may use to infer the state machine. However, accurately measuring energy

consumption requires special monitoring equipments. So we use it as validation for our

inference algorithms, which only require handset-based probing.

We set up experiments to confirm the inactivity timers and state promotion delays for

Carrier 1 by monitoring the handset energy consumption as follows. The battery of an HTC

TyTN II smartphone is attached to a hardware power meter [17], which is also connected

via USB to a PC that records fine-grained power measurements by sampling the current

drawn from the battery at a frequency of 5000 Hz. Figure 3.7 shows one representative

experimental run of the validation. During probing, we keep the handset LCD at the same

brightness level, turn off GPS and WiFi, and disable all network activities. After keeping

the smartphone in this inactive state for 20 sec, we send a UDP packet at t = 23.8s thus

triggering an IDLE→DCH promotion that takes approximately 2 sec as inferred in §3.1.1.

From t = 26.1s, the phone remains at the high-power DCH state for about 5 sec, then
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switches to the low-power FACH state at t = 31.5s. Finally at t = 44.1s, the phone returns

to the IDLE state. The measured inactivity timer values are longer than the inferred ones by

about 10%, likely due to the synchronization overhead between the RNC and the handset.

We similarly verified the FACH→DCH promotion delay, and validated Carrier 2’s state

machines for both 2G and 3G.

Using the IDLE power as baseline, we compute the power consumption of the 3G ra-

dio interface as shown in Table 3.12. We also infer the RLC buffer thresholds for the

FACH→DCH promotion by performing binary search. Instead of using the promotion de-

lay as described in §3.1.1, we use energy as an indicator to search for the RLC buffer

threshold that exactly triggers the promotion, for each direction. The validation results are

consistent with our inference results.

3.2 Trace-driven RRC State Inference

We now describe our state inference algorithm, which takes a packet trace P1, ..., Pn

as input where Pi is the i-th packet in a trace collected on a handset. The output is S(t)

denoting the RRC state or state transition at any given time t. S(t) corresponds to one of the

2The power values in Table 3.1 were measured in good signal strength conditions. [28] shows that signal
strength may have significant impact on the handset radio power consumption.
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following: IDLE, FACH, DCH, IDLE→FACH, and FACH→DCH. We focus on describing

the inference algorithm for Carrier 1 (Figure 2.2) while the technique is also applicable to

other carriers using a different state machine through minor modification.

Clearly, this problem can be cleanly solved if the online data collector is able to read

the RRC state from the handset hardware. However, we are not aware of any API or known

workaround for directly accessing the RRC state information on any smartphone system.

In other words, it is difficult to directly observe the low-level communication between a

handset and the RNC.

3.2.1 Inference Methodology

The state inference algorithm follows a high-level idea of replaying the packet trace

against an RRC state machine simulator, whose the state transition model and parameters

can be inferred using the techniques described in §3.1.

The algorithm performs iterative packet-driven simulation. Let Pi and Pi+1 be two

consecutive packets whose arrival time are ti and ti+1, respectively. Intuitively, if S(ti)

is known, then ∀ti < t ≤ ti+1, S(t) can be inferred in O(1) based on three factors, by

following the RRC state transition rules.

1. The inter-arrival time between Pi and Pi+1, depending on which a handset may expe-

rience tail times causing a state demotion then a possible state promotion when Pi+1

arrives.

2. The packet size of Pi+1, which may trigger a FACH→DCH promotion if it fills up

the RLC buffer. Considering RLC buffer consumption time (§3.1.1.3) enables the

inference algorithm to perform more fine-grained simulation of RLC buffer dynamics

to more precisely capture state promotions.

3. The direction of Pi+1. Depending on the location where the packet trace is collected,

the algorithm behaves differently in terms of inferring a state promotion.
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• The trace is collected at the handset, which is at the downstream from the RNC

where state promotions take place. Assume that Pi+1 triggers a promotion. If

Pi+1 is downlink (Figure 3.9), the promotion already finishes when the handset

receives it. Therefore Pi+1 triggers a promotion before its arrival. On the other

hand, if Pi+1 is uplink i.e., the application just puts the packet into the uplink

RLC buffer, then the state promotion has just begun (Figure 3.8). Therefore the

promotion will happen after Pi+1 is captured.

• The trace is collected at the core network (GGSN), which is at the upstream

from the RNC where state promotions take place. That is just the opposite

case. Assume that Pi+1 triggers a promotion. If Pi+1 is downlink (Figure 3.9),

the promotion will happen after Pi+1 is captured. Otherwise the promotion has

already finished (Figure 3.8).

When S(ti+1) is determined, S(ti+2) can be iteratively computed based on S(ti+1) and

Pi+2, and so on.

3.2.2 Validation of State Inference

We evaluate our simulation-based state inference technique, described in §3.2.1, by

comparing it with handset-power-based inference approach. We simultaneously collect
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both power traces (using a hardware power monitor [17]) and packet traces for popular

websites from an HTC TyTn II smartphone using Carrier 1’s UMTS network. We infer the

RRC states independently from each trace, and then compare their results. Note that the

simulation-based state inference technique does not require any special monitoring equip-

ment.

3.2.2.1 Power-based State Inference

Inferring RRC states from power traces requires special monitoring equipment and is

non-trivial due to noise. We next describe a novel algorithm that infers RRC states from

a handset’s overall power consumption, since it is difficult to measure the radio interface

power separately. Our basic assumptions are (i) a handset’s 3G radio interface consumes

a considerable fraction of the total handset power [18], and (ii) the power consumed at

the three RRC states differs significantly (§2.1.2). Both assumptions are confirmed by our

experiments (described later in Figure 3.10).

The input generated by the power meter is P (t) describing the overall handset power

at a granularity of 0.2 msec. Our power-based state inference algorithm distinguishes

RRC states using fixed power thresholds and identifies state transitions by observing power

changes. It consists of three steps. (i) Downsample P (t) from 5kHz to 10Hz by averaging

power values of every 500 power samples to reduce noise. (ii) Use two power thresholds µ
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Table 3.2: Packet-based vs. power-based inference results
Trace name % Time State Promotions
(Trace Length) Overlap Agree Pkt Err Pwr Err
News1 (180s) 93.4% 7 1 0
News2 (180s) 96.5% 9 0 0
News3 (190s) 96.3% 9 0 0
News4 (250s) 95.5% 12 0 1
Social1(250s) 95.7% 13 0 0
Social2(180s) 91.3% 10 0 0
Social3(275s) 94.5% 18 1 0
Email1 (250s) 94.4% 16 0 1
Email2 (275s) 94.4% 17 0 0
Stream1(180s) 98.7% 3 0 0
Stream2(180s) 99.1% 2 0 0
Total (2390s) 95.3% 116 2 2

and ν to distinguish the three RRC states: P (t) < µ for IDLE, µ ≤ P (t) < ν for FACH, and

ν ≤ P (t) for DCH. (iii) Identify state transitions by examining power changes crossing the

thresholds.

The values of µ and ν are determined from histograms of measured power values of

each trace. A representative example for an HTC TyTn II phone is shown in Figure 3.10,

from which we observe that the measured overall handset power values form three clusters

corresponding to IDLE, FACH, and DCH. The variation within each cluster is mostly due

to power change of other system components (e.g., CPU). Figure 3.10 indicates that the 3G

radio interface plays a vital role in determining the overall handset power consumption, as

at DCH, the radio power (800 mW) contributes 1/3 to 1/2 of the total device power (1600

mW to 2400 mW3). All histograms for traces shown in Table 3.2 suggest that we set µ and

ν to 1000 mW and 1600 mW, respectively, for TyTn II.

3.2.2.2 Validation Results

We obtained 11 traces listed in Table 3.2 by simultaneously collecting both packet traces

and power traces. Then we employ both algorithms (packet-based and power-based) to

3As shown in Figure 3.10, the base power of TyTn II is 800 mW as long as the handset is on.
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Figure 3.11: Comparing power-based and packet-based state inference results (the
Social1 trace).

infer the RRC states. Table 3.2 shows the comparison results. The “% Time Overlap”

column computes the percentage of time periods during which both algorithms produce

exactly the same RRC state or the same state promotion.

The right three columns of Table 3.2 compares inferred state promotions. “Agree”

counts the number of pairs (X, Y ), where promotion X and Y are inferred by the two

methods respectively, such that X and Y have the same promotion type and their time pe-

riods overlap (it does not require that they match exactly). For a promotion inferred by

either algorithm not belonging to such a pair, it is either an error of packet-based inference

methodology (counted by the first number of “Pkt Err”) or an error of the power-based

approach (counted by “Pwr Err”) due to noise, judged by our manual inspection. Table 3.2

indicates that both inference methods have comparably high accuracy. We observe that in-

accuracies are mostly caused by noises for power-based approach, and variations of uplink

RLC buffer thresholds and consumption time, for packet-based inference method.

Figure 3.11 visualizes inference results for the Social1 trace. The figure consists of

five bands (from up to down): measured power curve, uplink packets (each vertical line

corresponds to one packet), downlink packets, RRC states inferred by packets (with tails

inferred too), and states inferred by power. Different RRC states are visualized by blocks

with different shapes, shades, and colors.

36



Table 3.3: Measured average radio power consumption
TyTn II NexusOne ADP1 ∗

Carrier 1 Carrier 1 T-Mobile
P (IDLE) 0 0 10mW
P (FACH) 460mW 450mW 401mW
P (DCH) 800mW 600mW 570mW

P (FACH→DCH) 700mW 550mW N/A
P (IDLE→DCH) 550mW 530mW N/A
* Reported by [18] on an Android HTC Dream phone

3.3 Radio Power Model

We use a simple but robust power model to estimate the UMTS radio energy consump-

tion using the inferred RRC states introduced in §3.2. It is calculated by associating each

RRC state or state promotion an average power value measured from a particular phone,

assuming in 3G networks, these average values are representative [18, 5] (also see Fig-

ure 3.11) despite other factors such as signal strength that also directly impact power con-

sumption [28]. Table 3.3 reports measured average radio power for an HTC TyTn II and a

Google Nexus One for each RRC state and during each state promotion. The measurement

methodology is described in §3.1.3. It is important to note that the 3G radio interface plays

a vital role in determining the overall handset power consumption, as at DCH, the radio

power contributes 1/3 to 1/2 of the overall device power during the normal workload, as

measured in §3.2.2.1.

3.3.1 Radio Power Model of 4G LTE Networks

Although this dissertation focuses on 3G UMTS networks, in our work [11], we also

investigated the 4G LTE networks by proposing an accurate LTE radio power model. It has

two major differences from the aforementioned UMTS power model. (i) It considers the

DRX mode in both the RRC CONNECTED and the RRC IDLE state. (ii) Since the data rate

of LTE is much higher than that of 3G, it is not safe to assume the constant power level at

the RRC CONNECTED state regardless of the network throughput. So our LTE power model
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further takes into account the impact of data rate on radio power consumption. Note that

the UMTS power model used in our analyses from Chapter IV to Chapter VII can be easily

replaced by the LTE power model so our proposed analysis methodologies can be applied

to 4G traffic as well.

3.4 Quantifying Resource Consumption

Recall that in §2.4, we introduced three important metrics for quantifying resource con-

sumption and revealed their incurred key tradeoffs. We revisit the three metrics below.

• E: the handset radio energy consumption. It is the energy consumed by the cellular

radio interface whose radio power contributes 1/3 to 1/2 of the overall handset power

during the normal workload [6].

• S: the signaling overhead.

• D: the radio resource consumption.

By leveraging the trace-driven RRC state inference technique (§3.2) and the radio power

model (§3.3), we can compute the three metrics from a packet trace collected from a handset

or from the cellular core network, by following the steps below.

1. Perform trace-driven state inference (§3.2). The input is a packet trace P1, ..., Pn.

The output is S(t) denoting the RRC state or state transition at any given time t.

S(t) corresponds to one of the following: IDLE, FACH, DCH, IDLE→FACH, and

FACH→DCH.

2. E is calculated by associating each RRC state or state promotion an average power,

using the power model described in §3.3. Given the state inference results S(t) and

the measured radio power values P (·) shown in Table 3.3, the radio energy consumed

between t1 and t2 is computed as
∫ t2
t1
P (S(t))dt.
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3. S is quantified by the total state promotion delay (including IDLE→DCH, IDLE→FACH,

and FACH→DCH).

4. D is measured by the total DCH (the high-speed dedicated channel) occupation time

(including the tail time).

3.5 Summary

We have described four important analysis techniques for cellular networks: the RRC

state machine inference, the trace-driven RRC state inference, the radio power model,

and the methodology for quantifying cellular resource consumption. They will be used

as “building blocks” in the rest of the dissertation:

• We use the technique described in §3.1 to infer the RRC state transition models for

Carrier 1 and 2 introduced in §2.1.3. The inferred RRC state machines and their

parameters are shown in Figure 2.2 and Figure 2.3, respectively. We will refer to

these two carriers in the rest of the dissertation.

• We use the methodology introduced in §3.4 to quantify the cellular resource con-

sumption in Chapter IV to Chapter VII in various contexts. Note that the resource

quantification technique leverages the trace-driven RRC state inference technique

(§3.2) and the cellular radio power model (§3.3).

39



CHAPTER IV

Characterizing Radio Resource Utilization for Cellular

Networks

4.1 Introduction

As described in §2.1, the current design of the RRC state machine appears to be ad-hoc

with statically configured parameters. We now use real cellular traces from a large cellular

ISP to systematically investigate its effect on important factors from both the network op-

erator’s perspectives, namely radio resource usage efficiency and management overhead,

and from end-user’s perspective, namely device energy consumption and application per-

formance. We quantitatively analyze the tradeoffs incurred by the RRC state machine(§2.4)

among these factors. In particular, we focus on settings of critical inactivity timer values

that determine when to release radio resources after a period of inactivity.

As an example of the challenge in balancing the tradeoffs, using real UMTS cellular

traces we observe that decreasing one inactivity timer by three seconds can reduce the

overall radio resource usage by 40%, but increasing the number of state promotions by

31%. On the other hand, increasing the inactivity timer effectively enhances end user

experience and reduces the management overhead, however at the expense of low efficiency

in radio resource utilization and energy consumption. Intuitively, the optimal timer settings

heavily depend on application traffic patterns and thus can benefit from traffic awareness
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via trace-driven tuning.

In this chapter, we undertake a detailed exploration of the RRC state machine and its

optimizations using real traces from a large cellular ISP. In particular, we make the follow-

ing two contributions.

1. Characterization of state machine behaviors. The current RRC state machine pa-

rameters are either empirically configured in an ad-hoc manner [29], or determined using

analytical traffic models [19, 20]. The latter approach, however, suffers from several limi-

tations. (i) The expressiveness of an analytical model is quite limited and is unlikely to cap-

ture, using a statistical distribution with a few parameters, the characteristics of real-world

traffic patterns generated by millions of cellular users. (ii) The existence of concurrent

applications accessing the network further increases the difficulty of modeling the packet

dynamics.

We systematically characterize the impact of existing operational state machines by

analyzing traces collected from a commercial UMTS network. We found that short data

transfers severely suffer from the state promotion delay, and significant portions (up to

45.3%) of the occupation time of the high-speed dedicated transmission channel is wasted

on the tail time (§2.1.3). We explore the optimal timer values by replaying the trace against

different state machine settings with varying parameters. Our findings suggest that the

fundamental limitation of the current state machine design is its static nature of treating

all packets according to the same inactivity timer, making it difficult to balance the afore-

mentioned tradeoffs. We also observe that applications exhibit different sensitivities to the

change of inactivity timers due to their different traffic patterns. To the best of our knowl-

edge, our work is the first empirical study that employs real cellular traces to investigate

the optimality of RRC state machine configurations.

2. Analysis of multimedia streaming strategies. We study the streaming approaches

employed by Pandora audio [30] and YouTube video streaming, the two most popular

smartphone multimedia streaming applications contributing large traffic volume. Our anal-

41



ysis demonstrates that traffic patterns impose significant impact on the radio resource and

energy consumption, again due to the interplay between the mobile application and the

RRC state machine. The current Pandora approach incurs long tail periods, which waste

50% of the dedicated channel time and 59% of the radio energy, while the YouTube strategy

suffers from long dedicated channel occupation time due to bandwidth under-utilization.

We propose a simple improvement that saves the YouTube streaming energy by 80% by

leveraging the existing fast dormancy feature supported by 3GPP specifications (§2.5).

The remainder of the chapter is organized as follows. Using the cellular measurement

data described in §4.2, we quantify the resource impact of the RRC state machine in §4.3

and investigate how to optimize the inactivity timer values in §4.4. In §4.5, we briefly

describe two approaches that can potentially improve the current inactivity timer scheme,

before concluding the chapter in §4.6. The two approaches described in §4.5 will be ex-

plored in more depth in Chapter V and Chapter VI, respectively.

4.2 The Measurement Data

This section discusses the traffic data used in our study (§4.3 and §4.4). We first de-

scribe the raw dataset in §4.2.1, then in §4.2.2, we describe the extraction procedure for

application-specific data for further analysis.

4.2.1 The Raw Dataset

Our dataset is a large TCP header packet trace collected from Carrier 1 (introduced

in §2.1.3) on January 29, 2010 in the normal course of operations. The collection point is

one GGSN that primarily serves 3G UMTS users but also 2G GPRS users. Non-3G traffic

are filtered by excluding SGSNs that exclusively serve 2G users.

Sampling was performed on a per GTP (GPRS Tunneling Protocol) session basis with

a sampling rate of 1:16, so that all packets in both directions from a sampled GTP session

were captured. Our trace contains 278 million TCP packets (162 GB data) of 3G traffic
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Figure 4.1: Session rate distribution over sessions longer than 100ms for 2G and 3G data

continuously captured in 3 hours. Due to concerns of large traffic volume and user privacy

issues, we only recorded TCP/IP headers and a 64-bit timestamp for each packet, but no

subscriber IDs or phone numbers.

Subsequently, we extract sessions (they are different from GTP sessions) from the

trace, with each session consisting of all packets transferred by the same handset iden-

tified through the private client IP address present in the trace. It is known that cellular

public IPs change very quickly [31]. But private IPs of Carrier 1 are much less dynamic,

changing only at the interval of tens of minutes. Multiple TCP flows from concurrent ap-

plications may be mixed in the same session. We use a threshold of 60 sec of idle time to

decide that a session has terminated. Changing this value to other values such as 45 or 75

sec does not qualitatively affect the analysis results. Besides, as shown in Figure 4.1, we

do observe qualitative difference of session rate (total bytes divided by the duration of a

session) between 3G and 2G. Finally, we extracted about 1.0 million 3G sessions from the

raw trace.

We discuss limitations of our dataset. First, similar to previous measurements of wired

network using passive trace [32, 33], the finite duration (3 hours) may influence distribu-

tions of state machine characteristics. Second, the dataset does not contain UDP traffic. A

recent study [33] indicates that UDP accounts for less than 8% of the traffic volume for a

wired VPN link. We expect the percentage of UDP traffic for cellular networks to be even

smaller because currently UDP-based streaming and gaming applications on smartphones
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Table 4.1: Cellular traces of five applications
Application Sessions Bytes Description

Email-1 15K 1.4 GB Email provider 1
Email-2 11K 536 MB Email provider 2

Sync 4.9K 62 MB Synchronization service
Stream 2.7K 395 MB Pandora audio streaming [30]
Map 1.8K 60 MB Interactive mapping

are not as popular as those on PCs.

4.2.2 Application-specific Data Extraction

From the preprocessed trace, we select five traffic types each corresponding to a partic-

ular application as shown in Table 4.1. For each application, we extract sessions in which

at least 95% of the packets have either the source or the destination as one fixed server

IP, thus eliminating coexistence of other applications as one session may contain multiple

TCP flows of concurrent applications. For example, “Sync” consists of 4.9K sessions of a

popular synchronization service. All its sessions access the same server that synchronizes

emails, calendar events, contacts etc. between PCs and a handset using push-based notifi-

cation mechanism. We use the five datasets for per-application analysis in §4.3.2 and §4.4.3

to study how application traffic patterns affect the tradeoff described in §2.4.

4.3 Resource Impact of the RRC State Machine

In this section, we study two main negative effects of the RRC state machine, and quan-

tify them using our datasets provided by Carrier 1, whose RRC state machine is shown in

Figure 2.2 (inferred by §3.1). As far as we know, this is the first study that uses real cellular

traces to understand how the two factors of the RRC state machine, the state promotion

overhead (§4.3.1) and the tail effects (§4.3.2), impact performance, energy efficiency, and

radio resource utilization. These two factors pose key tradeoffs that we attempt to bal-

ance in this chapter. We investigate how multimedia streaming traffic pattern affects radio
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resource utilization in §4.3.3.

Our overall analysis approach is as follows. We feed the packet trace into the trace-

driven RRC state inference program (§3.2). It simulates the RRC states, based on which

we compute various statistics of resource usage shown below.

4.3.1 State Promotion Overhead

As discussed in §2.1.3, the RRC state promotion may incur a long latency due to control

message exchanges for resource allocation at the RNC. A large number of state promotions

increase management overheads at the RNC and worsen user experience [13]. They have

particularly negative performance impact on short sessions. For example, starting from the

IDLE state, usually it takes less than 10 sec to transfer a 200KB file under normal signal

strength conditions. In such a scenario, the constant overhead of 2 sec (the IDLE→DCH

promotion delay) accounts for at least 20% of the total transfer time. In other UMTS

networks with 3.4kbps SRB (Signalling Radio Bearer), such a promotion time for packet

session setup may take even longer, up to 4 seconds [3]. It is also known that signaling

DoS attacks that maliciously trigger frequent state transitions can potentially overload the

control plane and detrimentally affect the 3G infrastructure [34].

We statistically quantify the state promotion overhead using our dataset. Given Σ, the

set of sessions extracted in §4.2.1, we compute its average promotion overhead R(Σ),

defined as the fraction of the total promotion delay relative to the total duration of all

sessions. The duration of a session is defined as the timestamp difference between the first

and the last packet in that session.

R(Σ) =

∑
s∈Σ {2.0NIdle-DCH(s) + 1.5NFACH-DCH(s)}∑

s∈Σ {T (s) + 2.0NIdle-DCH(s) + 1.5NFACH-DCH(s)}

Here 1.5 sec and 2.0 sec are the two promotion delays described in Table 3.1,NIdle-DCH(s)

and NFACH-DCH(s) denote for session s the number of IDLE→DCH and FACH→DCH pro-

motions, respectively. And T (s) is the session duration after preprocessing (excluding
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Figure 4.2: Cumulative promotion overhead

promotion delays). Then in Figure 4.2, we plot the CDF of total session duration (includ-

ing promotion delays) and the cumulative promotion overhead function CP (x), defined as

R(Σ′) where Σ′ contains all sessions whose session durations (including promotion delays)

are less than x. For example, we have CDF(10) = 0.57 and CP (10) = 0.57. They indicate

that within the dataset, 57% of the sessions are at most 10 sec, and their average promotion

overhead R(Σ′) is 57%. Clearly, Figure 4.2 indicates that shorter sessions, which con-

tribute to the vast majority of sessions observed, suffer more severely from the promotion

delay, as CP (x) is a monotonically decreasing function of x.

Our second observation is that, the RRC state promotion delay may be longer than

application-specific timeout values, thus causing unnecessary timeouts leading to increased

traffic volume and server overhead. For example, by default, Windows uses t = 1, 2, 4, 8

sec as timeout values for DNS queries [35]. Whenever a DNS query triggers an IDLE→DCH

promotion that takes 2 seconds, the handset always experiences the first two timeouts.

Therefore, two additional identical DNS queries are unnecessarily transmitted, and three

identical responses simultaneously return to the handset, as shown in Table 4.2. This of-

ten happens in web browsing when a user clicks a link (triggering a DNS query) after an

idle period. The problem can be addressed by using a large timeout value after a long idle

period for UMTS 3G connection.
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Table 4.2: Duplicated DNS queries and responses due to an IDLE→DCH promotion in
Windows XP

Time (s) Direction Details of DNS query/response
0.000 Uplink Std. query A www.eecs.umich.edu
0.989 Uplink Std. query A www.eecs.umich.edu
1.989 Uplink Std. query A www.eecs.umich.edu
2.111 Downlink Std. query response A 141.212.113.110
2.112 Downlink Std. query response A 141.212.113.110
2.121 Downlink Std. query response A 141.212.113.110

4.3.2 The Tail Effects

One straightforward way to alleviate the state promotion overhead is to increase inac-

tivity timer values. For example, consider two sessions that transfer data on DCH during

time=0 to time=3 sec and from t = 10s to t = 14s. We can eliminate the state promotion

at t = 10s by increasing α (the DCH→FACH timer, see §2.1.3) to at least 7 sec. However,

this decreases the DCH utilization efficiency as the handset occupies the dedicated channel

from t = 3s to t = 10s without any data transmission activity. Furthermore, this worsens

the negative impact of tail effects, which waste radio resources and handset radio energy.

We define a tail as the idle time period matching the inactivity timer value before a state

demotion [14]. It can never be used to transfer any data. In the above example, if α < 7sec,

then there exists a DCH tail from t = 3 to t = 3 + α. Otherwise the period between t = 3

and t = 10 does not belong to a tail since there is no state demotion.

During a tail time, a handset still occupies transmission channels and WCDMA codes,

and its radio power consumption is kept at the corresponding level of the state. In typical

UMTS networks, each handset is allocated dedicated channels whose radio resources are

completely wasted during the tail time. For HSDPA [3] described in §2.1.2, although the

high speed transport channel is shared by a limited number of handsets, occupying it during

the tail time can potentially prevent other handsets from using the high speed channel.

More importantly, tail time wastes considerable amount of handset radio energy regardless

of whether the channel is shared or dedicated. Reducing tail time incurs more frequent
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Table 4.3: Breakdown of RRC state occupation /transition time and the tail ratios
Occupation/Trans. Time
PDCH 44.5%
PFACH 48.0%

PIDLE→DCH 6.8%
PFACH→DCH 0.7%

Tail Ratios
PDCH-Tail 45.3%
PFACH-Tail 86.1%
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Figure 4.3: Distribution of PDCH-Tail and PFACH-Tail across all sessions

state transitions, a key tradeoff we explored in §2.4.

Overall measurement. Table 4.3 provides overall statistics for all sessions. The first

four rows in Table 4.3 break down state occupation/transition time of all sessions into four

categories (they add up to 100%): on DCH/FACH states, or in IDLE→DCH/ FACH→DCH

promotions. In the other two rows, PDCH-Tail is the DCH tail ratio, defined as the total DCH

tail time as a percentage of the total DCH time. We define PFACH-Tail, the FACH tail ratio, in

a similar way. Figure 4.3 plots the CDFs of PDCH-Tail and PFACH-Tail on a per-session basis.

The results indicate that tail time wastes considerable radio resources and hence handset

radio energy. It is surprising that the overall tail ratio for DCH and FACH are 45% and 86%

respectively, and that more than 70% of the sessions have PDCH-Tail higher than 50%.

We also found that although the state occupation time of FACH is 48%, it transfers only

0.29% of the total traffic volume. The vast majority of the bytes (99.71%) are transferred

in DCH. In other words, due to its low RLC buffer thresholds (§2.1.3), low throughput, and
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Figure 4.5: Session size vs. tail ratios

long tail, the efficiency of FACH is extremely low.

There exists strong correlations between session size (i.e., the number of bytes of a

session) and state machine characteristics. In particular, Figure 4.4 indicates that large ses-

sions tend to have high fraction of DCH occupation time (PDCH) as well as low PFACH and

PPROMO = PIDLE→DCH + PFACH→DCH values. Also as shown in Figure 4.5, as session size

increases, both DCH and FACH tail ratios statistically decrease. In fact, small sessions are

short. Their tail time periods, which are at least 5 sec and 12 sec for DCH and FACH,

respectively, are comparable to or even longer than the total session duration, thus causing

high PDCH-Tail and PFACH-Tail values. Another reason is that, we observe large sessions are

more likely to perform continuous data transfers (e.g., file downloading and multimedia

streaming) that constantly occupy DCH, while small sessions tend to transfer data intermit-

tently.

Per-application measurement. Figure 4.6 plots the per-session DCH tail distributions

for the five applications shown in Table 4.1. The map application has low DCH tail ratios

as its traffic patterns are non-consecutive data bursts interleaved with short pauses that are

usually shorter than the α timer, so a handset always occupies DCH. On the other hand, the

Sync application has inefficient DCH utilizations indicated by high PDCH-Tail values, since

most of its sessions are very short. Usually a Sync session consists of a single data burst
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Figure 4.6: CDF of DCH tail ratios for different apps

incurring a 5-sec DCH tail and a 12-sec FACH tail.

4.3.3 Streaming Traffic Pattern and Tails

To investigate streaming traffic tails, we use an Android G2 phone of Carrier 2 to collect

tcpdump traces for Pandora audio streaming [30], which is the “Streaming” application in

Table 4.1, and YouTube video streaming1. They are the two most popular smartphone

multimedia streaming applications. Both of them use TCP.

Pandora [30] is a music recommendation and Internet radio service. A user enter her

favorite song or artist (called a “radio station”), then Pandora automatically streams similar

music. We collected a 30-min Pandora trace by logging onto one author’s Pandora account,

selecting a pre-defined station, and then listening to seven tracks (songs). The traffic pattern

is shown in Figure 4.7. Before a track is over, the content of the next track is buffered in

one burst utilizing the maximal bandwidth (indicated by “Buffer Track x” in Figure 4.7).

Then at the exact moment of switching to the next track, a small traffic burst is generated

(indicated by “Play Track x” in Figure 4.7). This explains why Pandora has high tail ratios

as each short burst incurs a tail. Based on our measurement, in the example shown in

Figure 4.7, 50.1% of the DCH time and 59.2% of the radio energy are wasted on tails.

1The two applications’ streaming behaviors may be different on other platforms (e.g., iPhone).
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Figure 4.7: Pandora streaming
(first 1k sec)

Figure 4.8: YouTube streaming
(first 100 sec)

YouTube employs a different streaming procedure consisting of three phases shown in

Figure 4.8. (i) For the first 10 sec, the maximal bandwidth is utilized for data transmission.

(ii) The throughput is kept at around 400kbps in the next 30 sec. (iii) The remaining

content is transmitted intermittently with the inter-burst time between 3 to 5 sec and the

throughput for each burst of 200 kbps. Shorter video clips may only experience the first

one or two phases. We found that YouTube traffic incurs almost no tail (except for one

tail in the end) since nearly all packet inter-arrival times (IATs) are less than the α timer

value. However, its drawback is under-utilization of network bandwidth causing its long

DCH occupation time. Further, sending data slowly may significantly waste handset energy

since on DCH a handset’s radio power is relatively stable (± 50mW as measured by a power

meter) regardless of the bit rate when the signal strength is stable.

In summary, our analysis of Figure 4.7 and Figure 4.8 again implies that application

traffic patterns can cause significant impact on radio resource and energy consumptions.

The Pandora’s approach incurs long tail periods while the YouTube streaming strategy

suffers from long DCH occupation time and low energy efficiency due to bandwidth under-

utilization. We propose a more energy-efficient approach for YouTube streaming in §4.5.
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4.4 Tuning Inactivity Timers

Given the earlier observation that the inactivity timer values determine the key tradeoff

(§2.4), we discuss how to optimize inactivity timers by trace-driven tuning. We describe

our methodology and evaluation metrics in §4.4.1, followed by the results in §4.4.2 and for

different applications in §4.4.3. We mainly focus on Carrier 1, with Carrier 2’s findings

briefly covered in §4.4.4.

4.4.1 Methodology and Evaluation Metrics

Given the moderate size of the search space for both inactivity timers, we exhaustively

enumerate all combinations of the α (DCH→FACH) timer, and the β (FACH→IDLE) timer

and evaluate each combination empirically by replaying all sessions for the correspond-

ing RRC state machine. We revisit the three metrics used to characterize the tradeoff as

described in §2.4 and §3.4.

• ∆E(α, β) = (E(α, β) − E(A,B))/E(A,B): the relative change in handset radio

energy consumption relative to that of the default timer setting.

• ∆S(α, β) = (S(α, β) − S(A,B))/S(A,B): the relative change in the number of

state promotions.

• ∆D(α, β) = (D(α, β) − D(A,B))/D(A,B): the relative change in the total DCH

time.

Here E(α, β) corresponds to radio energy consumption under a new state machine

configuration with different α and β timer values. The definitions of S(α, β) and D(α, β)

are similar. A = 5sec and B = 12sec correspond to the default inactivity timer values for

Carrier 1 (Table 3.1). We compute E, S, and D using the methodology described in §3.4.
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4.4.2 Overall Results

We visualize the distributions of ∆E, ∆S, ∆D in Figure 4.9, Figure 4.10, and Fig-

ure 4.11, respectively. Each plot contains |{0.5s, 1s, ..., 10s} × {0.5s, 1s, ..., 20s}| = 800

samples of (α, β) pairs. We first fit them to quadratic functions for α, β ≥ 1 using multi-

linear regression, with the residuals of less than 0.01, 0.08 (for α, β > 2sec), and 0.03 for

∆E, ∆S, and ∆D, respectively. Clearly, the regression model is traffic-dependent.

∆E(α, β) = −0.544 + 0.061α + 0.026β − 0.001α2

∆S(α, β) = 0.652− 0.123α− 0.023β + 0.005α2 + 0.001αβ

∆D(α, β) = −0.618 + 0.171α− 0.011β − 0.006α2

We observe that ∆E is close to a linear function of α and β. Clearly, decreasing inac-

tivity timer values reduces tail time, thus cutting a handset’s energy consumption. Usually

a handset is at DCH after transferring some data. Assuming this, the handset will first expe-

rience the α and then the β tail. Therefore α contributes more than β does in determining

∆E. For ∆S and ∆D, they can also be approximately regarded as linear functions of α
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and β when α, β > 2sec, and the contribution of α is much larger than that of β as well.

This is visualized in the 2D plots of Figure 4.12(a) and (b), where we fix one timer to the

default value and change the other timer, then study its impact on the three metrics.

The linear fitting for ∆S does not hold when α is small (< 2sec) due to skewed dis-

tribution of packet inter-arrival times. Aggressively decreasing α causes excessive number

of state promotions, which increase processing overheads at the RNC, worsen the appli-

cation performance, and cause additional energy overhead since a promotion may con-

sume as much as 87.5% of the power of the DCH state. We observe in Figure 4.12(a) that

|d∆S/dα| > |d∆D/dα| and |d∆S/dα| > |d∆E/dα| for α < 5sec, meaning that as we

reduce α, the incurred state promotion overhead grows faster than the saved DCH time and

energy do. This implies the fundamental limitation of current timeout scheme: it is difficult

to well balance the tradeoff among ∆D, ∆E, and ∆S as timers are globally and statically

set to constant values.

4.4.3 Per-application Results

Applications exhibit traffic patterns with application-specific packet dynamics, thus

with different responses to changes in inactivity timer values. We next study the impact

of the α timer on ∆E, ∆S, and ∆D for the five applications described in §4.2.2. We vary

α and fix β at the default value of 12 sec given the relatively small impact of β.

Figures 4.13, 4.14, and 4.15 illustrate the effect of α on ∆E, ∆S, and ∆D, respectively,

for the four applications (the curves for “Email-2” are very similar to those for “Email-1”).

For the interactive map application, when α is small, decreasing α causes considerable in-

crease of ∆S up to 470% (Figure 4.14). Accordingly, its ∆E increases as α decreases due

to additional energy consumed by state promotions (Figure 4.13). As described in §4.3.2,

the map traffic pattern consists of non-consecutive data bursts interleaved with short user-

injected pauses. Therefore a small value of α comparable to or shorter than most pause

durations will trigger a tremendous increase of FACH→DCH promotions. Figures 4.13
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and 4.15 also indicate that short sessions with a single data burst (the Sync application)

benefit more from small α values in terms of energy and radio resource savings. Our ob-

servations suggest that dynamically setting timers according to application traffic patterns

may better balance the tradeoff.

4.4.4 Comparing to Carrier 2’s State Machine

Recall that the major difference between the state machine for Carrier 1 (Figure 2.2)

and that for Carrier 2 (Figure 2.3) is the state promotion from IDLE, from which upon any

user triggered network activity, Carrier 1 directly enters into DCH while Carrier 2 may do

either IDLE→FACH or IDLE→FACH→DCH, depending on the packet size. By employing

the same simulation approach described in §4.4.1 for Carrier 2 we observe qualitatively

similar trends in terms of the way ∆E, ∆S, and ∆D response to changes of α and β. Also

α plays a more important role than β does in controlling the three metrics.

Figure 4.16 quantitatively compares both carriers. “Carrier 1” and “Carrier 2” are the

real state machine settings adopted by both carriers as described in Table 3.1. “Mixed”

corresponds to an artificial scheme using Carrier 2’s state transition model but Carrier 1’s

parameters. We characterize each scheme using six metrics with Carrier 1 serving as the

comparison baseline (its Y values are always 1).

The results in Figure 4.16 verify again the tradeoff discussed in §2.4. First, by compar-
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Table 4.4: Optimal timer values under constraints of ∆S and different objective functions

Objective
min{.75∆E + .25∆D} min{.50∆E + .50∆D} min{.25∆E + .75∆D}

(α, β,∆E,∆D) (α, β,∆E,∆D) (α, β,∆E,∆D)

∆S < −0.1 (8.0, 11.5,+0.12,+0.28) (6.5, 18.0,+0.18,+0.12) (6.5, 18.0,+0.18,+0.12)
∆S < 0.0 (6.0, 7.0,−0.06,+0.13) (4.0, 19.0,+0.10,−0.13) (4.0, 19.0,+0.10,−0.13)
∆S < 0.1 (4.0, 8.0,−0.13,−0.09) (3.0, 14.5,−0.04,−0.23) (3.0, 14.5,−0.04,−0.23)
∆S < 0.2 (3.5, 4.5,−0.23,−0.11) (2.5, 11.5,−0.13,−0.31) (2.5, 11.5,−0.13,−0.31)
∆S < 0.3 (3.0, 3.0,−0.30,−0.16) (2.5, 6.0,−0.26,−0.28) (2.0, 13.5,−0.11,−0.40)
∆S < 0.4 (2.5, 3.0,−0.33,−0.25) (2.0, 7.5,−0.25,−0.38) (1.5, 13.5,−0.14,−0.48)
∆S < 0.5 (2.0, 4.0,−0.34,−0.35) (1.5, 8.0,−0.26,−0.46) (1.5, 8.0,−0.26,−0.46)

ing “Carrier 1” and “Mixed”, we find that changing IDLE→DCH to IDLE→FACH→DCH

decreases DCH and DCH tail time by 24% and 39%, respectively, but at the cost of in-

creased number of state promotions by 40%, since for Carrier 2, when a handset at IDLE

has non-trivial amount of data (greater than the RLC buffer threshold) to transfer, it always

experiences two state promotions to DCH. Our second observation is derived by comparing

“Carrier 2” and “Mixed”. Their FACH→IDLE timers are significantly different (4 sec for

“Carrier 2” and 12 sec for “Mix”), resulting in considerable disparities of their FACH (and

FACH tail) times.

4.4.5 Summary

We tune the two inactivity timer values for the RRC state machine of Carrier 1. Ta-

ble 4.4 summarizes our derived timer values under different constraints of ∆S. Col-

umn 2 to 4 correspond to three optimization objectives: energy-saving biased (minimize

0.75∆E + 0.25∆D), no bias (minimize 0.5∆E + 0.5∆D), and radio-resource-saving bi-

ased (minimize 0.25∆E+ 0.75∆D). The coefficients are empirically chosen to weight the

energy and/or the radio resource consumption.

We highlight our findings in this section as follows.

• ∆E, ∆S, and ∆D are approximately linear functions of α and β when they are not

very small. The α timer imposes much higher impact on the three metrics than the β

timer does.
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• Very small α timer values (< 2sec) cause significant increase of the state promotion

overhead.

• Applications have different sensitivities to changes of inactivity timers due to their

different traffic patterns.

• It is difficult to well balance the tradeoff among ∆D, ∆E, and ∆S since the state

promotion overhead grows faster than saved DCH time and energy do when we re-

duce the timers. The fundamental reason is that timers are globally and statically set

to constant values.

4.5 Improve The Current Inactivity Timer Scheme

We explore approaches that improve the current inactivity timer scheme whose limita-

tions are revealed in §4.4.

4.5.1 Shaping Traffic Patterns

Handset applications alter traffic patterns based on the state machine behavior in order

to reduce the tail time. We describe two such approaches.

Batching and Prefetching. In [14], the authors discuss two traffic shaping techniques:

batching and prefetching. For delay-tolerant applications such as Email and RSS feeds,

their transfers can be batched to reduce the tail time. In the scenario of web searching, a

handset can avoid tails caused by a user’s idle time with high probability by prefetching

the top search results. [14] proposes an algorithm called TailEnder that schedules transfers

to minimize the energy consumption while meeting user-specified deadlines by batching

or prefetching. Their simulation indicates that TailEnder can transfer 60% more RSS feed

updates and download search results for more than 50% of web queries, compared to using

the default scheme. Similar schemes for delay-tolerant applications in cellular environment
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were proposed for, for example, offloading 3G data transfers to WiFi [36] and scheduling

communication during periods of strong signal strength [28].

Proposed Traffic shaping scheme for YouTube. Recall that in §4.3.3, we pinpoint the

energy inefficiency of YouTube traffic caused by under-utilizing the available bandwidth

(Figure 4.8).

To overcome such inefficiency, we reshape the traffic using a hypothetical streaming

scheme called chunk mode, as illustrated in Figure 4.17. The video content is split into n

chunks C1, ..., Cn, each transmitted at the highest bit rate. We model the traffic pattern of

chunk mode transfer as follows. Let L = 9.7MB be the size of a 10-minute video and let

M = 800kbps be the maximal throughput. For each chunk, it takes TSS seconds for the

TCP slow start2 to ramp up to the throughput of M . By considering delayed ACKs and

letting the RTT be 250ms (as measured by the ping latency to YouTube), we compute TSS

at 1.3 sec during which LSS = 60KB of data is transferred. The total transfer time for the

n chunks (excluding tails) is T = (TSS + (L
n
−LSS)/M)n, and the DCH tail and FACH tail

time are nα and nβ, respectively. The whole transfer incurs n IDLE→FACH promotions

and n FACH→DCH promotions for Carrier 2’s UMTS network.

Based on the above parameters, we compute ∆D and ∆E and plot them in Figure 4.18(a)

and (b), respectively. Note that the energy E consists of three components: the state pro-

2A slow start is necessary since the interval between consecutive chunks is longer than one TCP retrans-
mission timeout [37]. Using TCP keep alive can avoid slow starts but it consumes more energy due to the tail
effect.
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Figure 4.18: The evaluations of chunk mode streaming on (a) ∆D and (b) ∆E

motion energy, the DCH non-tail energy, and the tail energy of DCH/FACH. In each plot,

the two curves “YouTube” and “Chunk Mode” correspond to streaming schemes of current

YouTube and the chunk mode, respectively. We describe the “Chunk + FD” curve in §4.5.2.

As indicated by Figure 4.18, compared to current YouTube streaming strategy, the

chunk mode saves DCH time and energy by up to 80%. Transferring the whole video

in one chunk (n = 1) is the most effective. However, measurement results show that users

often do not watch the entire video [38]. Therefore when n is small, it may cause unneces-

sary data transfers if a user only watches part of the video. This problem can be addressed

by increasing n and transferring data chunks according to the playing progress of the video.

However, resources saved by the chunk mode decrease as n increases due to the tail effect.

To summarize, for some applications, shaping their traffic patterns based on the prior

knowledge of the RRC state machine brings significant savings of radio resources and

handset energy. Motivated by such an observation, in Chapter V, we design a tool that

profiles smartphone applications and identifies their inefficient resource usage due to their

traffic patterns poorly interacting with the RRC state machine.

4.5.2 Dynamic Timers and Fast Dormancy

Dynamic Timer Scheme. Our per-application study in §4.3.2 and §4.4.3 suggests that

dynamically changing timers can potentially better balance the tradeoff. Ideally, this can

be achieved by the RNC that adjusts timers at a per-handset basis according to observed
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traffic patterns. However, such an approach requires significant changes to the RNC, which

currently does not recognize IP and its upper layers. The computational overhead is also

a concern as the RNC has to identify traffic patterns and compute the appropriate timer

values for all connected handsets. The third challenge is that for each handset, the traffic

observed by the RNC may originate from multiple applications that concurrently access

the network, thus making identifying traffic patterns even harder.

Fast Dormancy. Another potential approach for mitigating the tail effect is fast dor-

mancy described in §2.5. Recall that in the fast dormancy scheme, a handset can proactively

request that the RRC state be immediately demoted to IDLE based on its prediction of an

imminent tail, thus reducing the tail time.

We use the YouTube example to demonstrate a typical scenario where fast dormancy

can be applied. Recall the chunk mode streaming scheme shown in Figure 4.17. In order

to eliminate tails, the YouTube application would invoke fast dormancy to demote the state

to IDLE immediately after a chunk is received (assuming no concurrent network activity

exists). This corresponds to the “Chunk + FD” curve in Figure 4.18(a) and (b), which

indicate that by eliminating the tails, fast dormancy can keep ∆D and ∆E almost constant

regardless of n, the number of chunks. Recall that a large n prevents unnecessary data

transfers in common cases [38] where a user watches part of the video.

As described in §2.5, we observe that a few handsets adopt fast dormancy in an application-

agnostic manner. To the best of our knowledge, however, no individual smartphone applica-

tion today can invoke fast dormancy based on its traffic pattern, partly due to two reasons.

First, for user-interactive applications (e.g., web browsing), accurately predicting a long

idle period is challenging as user behavior injects randomness to the packet timing. Sec-

ond, there lacks OS support that provides a simple programming interface for invoking fast

dormancy. In particular, the concurrency problem presents a challenge. It is not feasible

that applications independently predict the tail and invoke fast dormancy since state transi-

tions are determined by the aggregated traffic of all applications. The OS should schedule
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concurrent applications and invoke fast dormancy only if the combined idle period pre-

dicted by all applications is long enough. In Chapter VI, we propose a novel resource

management framework called TOP that bridges the gap between the application and the

fast dormancy support.

4.6 Summary

In this chapter, we undertook a detailed exploration of the RRC state machine, which

guides the radio resource allocation policy in 3G UMTS network, by analyzing real cellular

traces and measuring from real smartphones. We found that the RRC state machine may

cause considerable performance inefficiency due to the state promotion overhead, as well

as cause significant radio resource and handset energy inefficiency due to the tail effects.

These two factors form the key tradeoff that is difficult to balance by the current inactivity

timer designs. The fundamental reason is that the timers are globally and statically set to

constant values that cannot adapt to the diversity of traffic patterns generated by different

applications. We believe that addressing this problem requires the knowledge of mobile

applications, which can proactively alter traffic patterns based on the state machine be-

havior, or cooperate with the radio access network in allocating radio resources (e.g., the

fast dormancy approach). We will explore both approaches in Chapter V and Chapter VI,

respectively.
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CHAPTER V

Profiling Smartphone Apps for Identifying Inefficient

Resource Usage

Our analysis described in the previous chapter has shown that the traffic patterns for

many mobile applications can be improved based on the prior knowledge of the cellular

resource management policy. Doing so can potentially bring significant savings of radio

resources and handset energy. Motivated by such an observation, we focus on improving

the efficiency of smartphone applications in this chapter.

5.1 Introduction

Increasingly ubiquitous cellular data network coverage gives an enormous impetus to

the growth of diverse smartphone applications. Despite a plethora of such mobile appli-

cations developed by both the active user community and professional developers, there

remain far more challenges associated with mobile applications compared to their desktop

counterparts. In particular, application developers are usually unaware of cellular spe-

cific characteristics that incur potentially complex interaction with the application behav-

ior. Even for professional developers, they often do not have visibility into the resource-

constrained mobile execution environment. Such situations potentially result in smartphone

applications that are not cellular-friendly, i.e., their radio channel utilization or device en-
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ergy consumption are inefficient because of a lack of transparency in the lower-layer pro-

tocol behavior. For example, we discovered that for Pandora, a popular music streaming

application on smartphones, due to the poor interaction between the radio resource control

policy and the application’s data transfer scheduling mechanism, 46% of its radio energy is

spent on periodic audience measurements that account for only 0.2% of received user data

(§5.5.2.1).

In this chapter, we address the aforementioned challenge by developing a tool called

ARO (mobile Application Resource Optimizer). To the best of our knowledge, ARO is

the first tool that exposes the cross-layer interaction for layers ranging from higher lay-

ers such as user input and application behavior down to the lower protocol layers such as

HTTP, transport, and very importantly radio resources. In particular, so far little focus has

been placed on the interaction between applications and the radio access network (RAN)

in the research community. Such cross-layer information encompassing device-specific

and network-specific information helps capture the tradeoffs across important dimensions

such as energy efficiency, performance, and functionality, making such tradeoffs explicit

rather than arbitrary as it is often the case today. By performing various analyses for RRC

layer, TCP layer, HTTP layer, user interactions, followed by their cross-layer interactions,

ARO therefore helps reveal inefficient resource usage (e.g., high resource overhead of peri-

odic audience measurements for Pandora) due to a lack of transparency in the lower-layer

protocol behavior, leading to suggestions for improvement.

ARO consists of an online lightweight data collector and an offline analysis module. To

profile an application, an ARO user simply starts the data collector, which incurs less than

15% of runtime overhead, and then runs the application for a desired duration as a normal

application user. The collector captures packet traces, system and user input events, which

are subsequently processed by the analysis module on a commodity PC. The proposed ARO

framework (§5.2) also applies to other types of cellular networks such as GPRS/EDGE

(§3.1.2.1) [27], EvDO [10], and 4G LTE (§2.2) [11] that involve similar tradeoffs to those
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in UMTS. We highlight our contributions as follows.

1. Root cause analysis for short traffic bursts (§5.3.2). Low efficiency of radio re-

source and energy usage are fundamentally attributed to short traffic bursts carrying

small amount of user data while having long idle periods, during which a device

keeps the radio channel occupied, injected before and after the bursts [14, 5]. We de-

velop a novel algorithm to identify them and to distinguish which factor triggers each

such burst, e.g., user input, TCP loss, or application delay, by synthesizing analysis

results of the TCP, HTTP, and user input layer. ARO also employs a robust algorithm

(§5.3.2.1) to identify periodic data transfers that in many cases incur high resource

overhead. Discovering such triggering factors is crucial for understanding the root

cause of inefficient resource utilization. Previous work [39, 5] also investigate the im-

pact of traffic patterns on radio power management policy and propose suggestions.

In contrast, ARO is essential in providing more specific diagnosis by breaking down

resource consumption into each burst with its triggering factor accurately inferred.

For example, for the Fox News application (§5.5.2.2), by correlating application-

layer behaviors (e.g., transferring image thumbnails), user input (e.g., scrolling the

screen), and RRC states, ARO reveals it is user’s scrolling behavior that triggers scat-

tered traffic (i.e., short bursts) for downloading image thumbnails in news headlines

(i.e., images are transferred only when they are displayed as a user scrolls down the

screen), and quantifies its resource impact. Analyzing data collected at one single

layer does not provide such insight due to incomplete information (Table 5.3).

2. Quantifying resource impact of traffic bursts (§5.3.3). In order to quantitatively

analyze resource bottlenecks, ARO addresses a new problem of quantifying resource

consumption of traffic bursts due to a certain triggering factor. It is achieved by

computing the difference between the resource consumption in two scenarios where

bursts of interest are kept and removed, respectively. The latter scenario requires

changing the traffic pattern. To address such a challenge of modifying a cellular
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packet trace while having its RRC states updated accordingly, ARO strategically

decouples the RRC state machine impact from application traffic patterns, modifies

the trace, and then faithfully reconstructs the RRC states.

3. Identification of resource inefficiencies of real Android applications (§5.5). We

apply ARO to six real Android applications each with at least 250,000 downloads

from the Android market as of Dec 2010. ARO reveals that many of these very pop-

ular applications (Fox News, Pandora, Mobclix ad platform, BBC News etc.) have

significant resource utilization inefficiencies that are previously unknown. We pro-

vide suggestions on improving them. In particular, we are starting to contact devel-

opers of popular applications such as Pandora. The feedback has been encouragingly

positive as the provided technique greatly helps developers identify resource usage

inefficiencies and improve their applications [40].

The rest of the chapter is organized as follows. We outline the ARO system in §5.2.

In §5.3, we detail the analyses at higher layers (TCP, HTTP, burst analysis) as well as the

cross-layer synthesis. We briefly describe how we implement the ARO prototype in §5.4,

then present case studies of six Android applications in §5.5 to demonstrate typical usage

of ARO before concluding the chapter in §5.6.

5.2 ARO Overview

This section outlines the ARO system, which consists of two main components: the

data collector and the analyzers. The data collector runs efficiently on a handset to cap-

ture information essential for understanding resource usage, user activity, and application

performance. Our current implementation collects network packet traces and user input

events. But other information such as application activities (e.g., API calls) and system

information (e.g., CPU usage) can also be collected for more fine-grained analysis. The

collected traces are subsequently fed into the analyzers, which run on a PC, for offline
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Figure 5.1: The ARO System

analysis. Our design focuses on modularity to enable independent analysis of individual

layers whose results can be subsequently correlated for joint cross-layer analysis. The pro-

posed framework is easily extensible to other analyzers of new application protocols. We

describe the workflow of ARO as outlined in Figure 5.1.

1. The ARO user invokes on her handset the data collector, which subsequently col-

lects relevant data, i.e., all packets in both directions and user input (e.g., tapping or

scrolling the screen). Unlike other smartphone data collection efforts [41, 42], our

ability to collect user interaction events and packet-level traces enables us to perform

fine-grained correlation across layers. ARO also identifies the packet-to-application

correspondence. This information is used to distinguish the target application, i.e.,

the application to be profiled, from other applications simultaneously accessing the

network. Note that ARO collects all packets since RRC state transitions are deter-

mined by the aggregated traffic of all applications running on a handset.

2. The ARO user launches the target application and uses the application as an end

user. Factors such as user behavior randomness and radio link quality influence the

collected data and thus the analysis results. Therefore, to obtain a representative
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understanding of the application studied, ARO can be used across multiple runs or

by multiple users to obtain a comprehensive exploration of different usage scenar-

ios of the target application, as exemplified in our case studies (§5.5.1). The target

application might also be explored in several usage scenarios, covering diverse func-

tionalities, as well as execution modes (e.g., foreground and background).

3. The ARO user loads the ARO analysis component with the collected traces. ARO

then configures the RRC analyzer with handset and carrier specific parameters, which

influence the model used for RRC analysis (§3.2). The TCP, HTTP, and burst ana-

lyzers are generally applicable.

4. ARO then performs a series of analyses across several layers. In particular, the RRC

state machine analysis (§3.2) accurately infers the RRC states from packet traces so

that ARO has a complete view of radio resource and radio energy utilization dur-

ing the entire data collection period. ARO also performs transport protocol and ap-

plication protocol analysis (§5.3.1) to associate each packet with its transport-layer

functionality (e.g., TCP retransmission) and its application-layer semantics (e.g., an

HTTP request). Our main focus is on TCP and HTTP, as the vast majority of smart-

phone applications use HTTP over TCP to transfer application-layer data [43, 44].

ARO next performs burst analysis (§5.3.2), which utilizes aforementioned cross-layer

analysis results, to understand the triggering factor of each short traffic burst, which

is the key reason of low efficiency of resource utilization [5].

5. ARO profiles the application by computing for each burst (with its inferred triggering

factor) its radio resource and radio energy consumption (§5.3.3) in order to identify

and quantify the resource bottleneck for the application of interest. Finally, ARO

summarizes and visualizes the results. Visualizing cross-layer correlation results

helps understand the time series of bursts that are triggered due to different reasons,

as later demonstrated in our case studies (§5.5).
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Table 5.1: TCP analysis: transport-layer properties of packets
Category Label Description

TCP ESTABLISH A packet containing the SYN flag
connection CLOSE A packet containing the FIN flag

management RESET A packet containing the RST flag
Normal data DATA A normal data packet with payload

transfer ACK A normal ACK packet without payload
TCP DATA DUP A duplicate data packet

congestion, DATA RECOVER A data pkt echoing a duplicate ACK
loss, and ACK DUP A duplicate ACK packet
recovery ACK RECOVER An ACK echoing a duplicate data pkt
Others TCP OTHER Other special TCP packets

5.3 Profiling Mobile Applications

This section details analyses at higher layers, in particular the transport layer and the

application layer, using TCP and HTTP as examples due to their popularity. We further

describe how ARO uses cross-layer analysis results to profile resource efficiency of smart-

phone applications. Note that the RRC state machine analysis performed by ARO has been

described in §3.2.

5.3.1 TCP and HTTP Analysis

TCP and HTTP analysis serve as prerequisites for understanding traffic patterns created

by the transport layer and the application layer. Our main focus is on TCP and HTTP, as the

vast majority of smartphone applications use HTTP over TCP to transfer application-layer

data [43]. A recent large-scale measurement study [44] using datasets from two separate

campus wireless networks (3 days of traffic for 32,278 unique devices) indicates that 97%

of handheld traffic is HTTP.

We first describe the TCP analysis. ARO extracts TCP flows, defined by tuples of

{srcIP, srcPort, dstIP, dstPort} from the raw packet trace, and then infers the transport-

layer property for each packet in each TCP flow. In particular, each TCP packet is assigned

to one of the labels listed in Table 5.1. The labels can be classified into four categories
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covering the TCP protocol behavior: (i) connection management, (ii) normal data transfer,

(iii) TCP congestion, loss, and recovery, and (iv) other special packets (e.g., TCP keep alive

and zero-window notification).

In the third category, DATA DUP is usually caused by a retransmission timeout or fast

retransmission, and ACK DUP is triggered by an out-of-order or duplicate data packet. Du-

plicate packets indicate packet loss, congestion, or packet reordering that may degrade TCP

performance. A DATA RECOVER packet has its sequence number matching the ack num-

ber of previous duplicate ACK packets in the reverse direction, indicating the attempt of

a handset to transmit a possibly lost uplink packet or a downlink lost packet finally arriv-

ing from the server. Similarly, the ack number of an ACK RECOVER packet equals to the

sequence number of some duplicate data packets plus one, indicating the recipient of a

possibly lost data packet.

ARO subsequently performs HTTP analysis by reassembling TCP flows then following

the HTTP protocol to parse the TCP flow data. HTTP analysis provides ARO with the

precise knowledge of mappings between packets and HTTP requests or responses.

5.3.2 Burst Analysis

As described earlier, low efficiencies of radio resource and energy utilization are at-

tributed to short traffic bursts carrying small amount of data. ARO employs novel algo-

rithms to identify them and to infer which factor triggers each such burst by synthesizing

analysis results of the RRC, TCP, HTTP, and user input layer. Such triggering factors,

which to our knowledge are not explored by previous effort, are crucial for understanding

the root cause of inefficient resource utilization.

ARO defines a burst as consecutive packets whose inter-arrival time is less than a

threshold δ. We set δ to 1.5 seconds since it is longer than commonly observed cellular

round trip times [45]. Since state promotion delays are usually greater than δ, all state pro-

motions detected in the trace-driven RRC state inference (§3.2) are removed before bursts

71



Table 5.2: Burst Analysis: triggering factors of bursts
Label The burst is triggered by ...

USER INPUT User interaction
LARGE BURST (The large burst is resource efficient)
TCP CONTROL TCP control packets (e.g., FIN and RST)
SVR NET DELAY Server or network delay
TCP LOSS RECOVER TCP congestion / loss control
NON TARGET Other applications not to be profiled
APP The application itself

APP PERIOD Periodic data transfers (One special type of APP)

are identified. Each bar in the “Bursts” band in Figure 3.11 is a burst.

A burst can be triggered by various factors. Understanding them benefits application

developers who can then customize optimization strategies for each factor, e.g., to eliminate

a burst, to batch multiple bursts, or to make certain bursts appear less frequently. Some

bursts are found to be inherent to the application behavior. We next describe ARO’s burst

analysis algorithm that assigns to each burst a triggering factor shown in Table 5.2 by

correlating TCP analysis results and user input events.

The algorithm listed in Figure 5.2 consists of seven tests each identifying a triggering

factor by examining burst size (duration), user input events, payload size, packet direction,

and TCP properties (§5.3.1) associated with a burst. We explain each test as follows. A

burst can be generated by a non-target application not profiled by ARO (Test 1). For Test

2, if a burst is large and long enough (determined by two thresholds ths and thd), it is

assigned a LARGE BURST label so ARO considers it as a resource-efficient burst. If a

burst only contains TCP control packets without user payload (Lines 06 to 08), then it is a

TCP CONTROL burst as determined by Test 3. To reveal delays caused by server, network,

congestion or loss, the algorithm then considers properties of the first packet in the burst in

Test 4 and 5. For Test 6, if any user input activity is captured within a time window of ω

seconds before a burst starts, then the burst is assigned a USER INPUT label, if it contains

user payload. For bursts whose triggering factors are not identified by the above tests, they

are considered to be issued by the application itself (APP in Test 7). Most such bursts turn
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01 Burst Analysis (Burst b) {
02 Remove packets of non-target apps;
03 if (no packet left) {return NON TARGET;} Test 1
04 if (b.payload > ths && b.duration > thd) Test 2
05 {return LARGE BURST;}
06 if (b.payload == 0) { Test 3
07 if (b contains any of ESTABLISH, CLOSE, RESET,
08 TCP OTHER packets)
09 {return TCP CONTROL;}
10 }
11 d0 ← direction of the first packet of b;
12 i0 ← TCP label of the first packet of b;
13 if (d0 == DL && (i0 == DATA || i0 == ACK)) Test 4
14 {return SVR NET DELAY;}
15 if (i0 == ACK DUP || i0 == ACK RECOVER ||
16 i0 == DATA DUP || i0 == DATA RECOVER) Test 5
17 {return TCP LOSS RECOVER;}
18 if (b.payload > 0 && find user input before b) Test 6
19 {return USER INPUT;}
20 if (b.payload > 0) {return APP;} Test 7
21 else {return UNKNOWN;}
22 }

Figure 5.2: The burst analysis algorithm
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out (and are validated) to be periodic transfers (APP PERIOD) triggered by an application

using a software timer. We devise a separate algorithm to detect them (§5.3.2.1). In practice

it is rare that a short burst satisfies multiple tests.

The burst analysis algorithm involves three parameters: ths and thd that quantitatively

determine a large burst (Test 2), and the time window ω (Test 6). We set ths = 100 KB,

thd = 5 sec, and ω = 1 sec. We empirically found that varying their values by ±25% (and

±50% for ω) does not qualitatively affect the analysis results presented in §5.5.

Within aforementioned seven tests, Test 1 to 3 are trivial. We validate Test 4 and 5 by

setting up a web server and intentionally injecting server delay and packet losses. Evalua-

tion for Test 6 and Test 7, which is more challenging due to a lack of ground truth, is done

by manually inspecting our collected traces used for case studies (§5.5).

5.3.2.1 Identifying Periodic Transfers

We design a separate algorithm to spot APP PERIOD bursts (Table 5.2), which are data

transfers periodically issued by a handset application using a software timer. Such transfers

are important because their impact on resource utilization can be significant although they

may carry very little actual user data (e.g., the Pandora application described in §5.5.2.1).

ARO focuses on detecting three types of commonly observed periodic transfers, though

not mutually exclusive. They constitute the most simple forms of periodic transfers a mo-

bile application can do using HTTP: (i) periodically fetching the same HTTP object, (ii)

periodically connecting to the same IP address, and (iii) periodically fetching an HTTP

object from the same host. Detecting other periodic activities can be trivially added to the

proposed detection framework shown in Figure 5.3. Also we found that existing approaches

for periodicity or clock detection (e.g., DFT-based [33] and autocorrelation-based [46]) do

not work well in our scenario where the number of samples is much fewer.

The algorithm, shown in Figure 5.3, takes as input a time series t1, ..., tn, and outputs

the detected periodicity (i.e., the cycle duration) if it exists. It enumerates all n(n − 1)/2
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01 Detect Periodic Transfers (t1, t2, ..., tn) {
02 C ← {(d, ti, tj) | d = tj − ti ∀j > i};
03 Find the longest sequence
04 D = (d1, x1, y1), ..., (dm, xm, ym) in C s.t.
05 (1) y1 = x2, y2 = x3, ..., ym−1 = xm, and
06 (2) max(di)−min(di) < p;
07 if m ≥ q return mean(d1, ..., dm);
08 else return “no periodic transfer found”;
09 }

Figure 5.3: Algorithm for detecting periodic transfers

possible intervals between ti and tj where 1 ≤ i < j ≤ n (Line 2), from which the

longest sequence of intervals is computed by dynamic programming (Lines 3-6). Such

intervals should be consecutive (Line 5) and have similar values whose differences are

bounded by parameter p (Line 6). If the sequence length is long enough, larger than the

threshold parameter q, then the average interval is reported as the cycle duration (Line 7).

We empirically set p=1 sec and q=3 based on evaluating the algorithm on (i) randomly

generated test data (periodic time series mixed with noise), and (ii) real traces studied

in §5.5.

5.3.3 Profiling Applications

We describe how ARO profiles mobile applications using cross-layer analysis. First,

leveraging RRC state inference and burst analysis results, ARO computes for each burst

(with its triggering factor known) its radio resource and radio energy consumption. Then

the TCP and HTTP analysis described in §5.3.1 allow ARO to associate each burst with

the transport-layer or the application-layer behavior so that an ARO user can learn quanti-

tatively what causes the resource bottleneck for the application of interest.

We describe two methodologies for quantifying the resource consumption of one or

more bursts of interest: computing the upperbound and the lowerbound. Their key dif-

ference is whether or not they consider non-interested bursts whose tails help reduce the

resource consumption of those interested bursts.
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Figure 5.4: An example of modifying cellular traces (X and Y are the bursts of interest to
be removed)

Method 1: Compute the upperbound of resource consumption. The radio energy

consumed by burst Bi is computed as
∫ t2
t1
P (S(t))dt where S(t) is the inferred RRC state

at time t and P (·) is the power function (Table 3.3). t1 is the time when Burst Bi starts

consuming radio resources. Usually t1 equals to the timestamp of the first packet of Bi.

However, if Bi begins with a downlink packet triggering a state promotion, t1 should be

shifted backward by the promotion delay since radio resources are allocated during the state

promotion before the first packet arrives (§3.2.1). t2 is the timestamp of the first packet of

the next burstBi+1, as tail times incurred byBi need to be considered (there may exist IDLE

periods before t2, but they do not consume any resource). Similarly, t2 is shifted backward

by the promotion delay if necessary. The radio resources consumed by Bi are quantified as

the DCH occupation time between t1 and t2. We ignore radio resources allocated for shared

low-speed FACH channels.

Method 2: Compute the lowerbound. One problem with Method 1 is that it may

overestimate a burst’s resource consumption, which may already be covered by the tail of a

previous burst. For example, consider burst Y in Figure 5.4(a). Its resource utilization lasts
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from t=12.5 sec to t=18.3 sec according to Method 1. However, such an interval is already

covered by the tail of the previous burst. In other words, the overall resource consumption

is not reduced even if in the absence of burst Y .

To address this issue, we propose another way to quantify the resource impact of one

or more bursts by computing the difference between the resource consumption of two sce-

narios where the bursts of interest are kept and removed, respectively. For example, in

Figure 5.4, let X and Y be the bursts of interest. Trace (a) and (d) correspond to the orig-

inal trace and a modified trace where X and Y are removed. Then their energy impact is

computed as Ea − Ed where Ea and Ed correspond to the radio energy consumption of

trace (a) and (d), respectively. The consumed resource computed by this method does not

exceed that computed by Method 1.

5.3.3.1 Modifying Cellular Traces

The aforementioned Method 2 is intuitive, while the challenge here is to construct a

trace with some packets removed. In particular, RRC state promotion delays affect the

packet timing. Therefore, removing packets directly from the original trace causes inac-

curacies as it is difficult to transform the original promotion delays to promotion delays in

the modified trace with different state transitions. To address such a challenge, we propose

a novel technique for modifying cellular traces. The high-level idea is to first decouple

state promotion delays from application traffic patterns before modifying the trace, then

reconstruct the RRC states for the modified trace.

The whole procedure is illustrated in Figure 5.4a-d (assuming we want to remove bursts

X are Y ). First, the original trace (Figure 5.4a) is normalized by removing all promotion

delays (Figure 5.4b). This essentially decouples the impact of state promotions from the

real application traffic patterns [5]. Then the bursts of interest are removed from the normal-

ized trace (Figure 5.4c). Next, ARO runs the state inference algorithm again to reconstruct

the RRC states with state promotions injected using the average promotion delay values
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shown in Table 3.1 (Figure 5.4d). As expected, the first packet in Figure 5.4d triggers a

promotion that does not exist in the original trace (a).

Validation. We demonstrate the validity of the proposed cellular trace modification

technique as follows. For each of the 40 traces listed in Table 5.3, we compare the state

inference results for (i) the original trace (e.g., Figure 5.4a) and (ii) a trace with promo-

tion delays removed then RRC states reconstructed, but without any packet removed (e.g.,

Figure 5.4e). Ideally their RRC inference results should be the same. Our comparison re-

sults show that for each of the 40 traces, both inference results are almost identical as their

time overlap (defined in §3.2.2) is at least 99%, and their total radio energy consumption

values differ by no more than 1%. The small error stems from the difference between orig-

inal promotion delays and injected new promotion delays using fixed average values. This

demonstrates that the algorithm faithfully reconstructs the RRC states. In §5.5, we show

resource consumption computed by both Method 1 and Method 2.

5.4 Implementation

We briefly describe how we implemented ARO. We built the data collector on An-

droid 2.2 by adding two new features (1K LoC) to tcpdump: logging user inputs and find-

ing packet-to-application correspondence (§5.2). ARO reads /dev/input/event* that

captures all user input events such as touching the screen, pressing buttons, and manipulat-

ing the tracking ball.

Finding the packet-to-application correspondence is more challenging. The ARO data

collector realizes this using information from three sources in Android OS: /proc/PID/fd

containing mappings from process ID (PID) to inode of each TCP/UDP socket, /proc/net

/tcp(udp)maintaining socket to inode mappings, and /proc/PID/cmdline that has

the process name of each PID. Therefore socket to process name mappings, to be identified

by the data collector, can be obtained by correlating the above three pieces of information.

Doing so once for all sockets takes about 15 ms on Nexus One, but it is performed only
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when the data collector observes a packet belonging to a newly created socket or the last

query times out (we use 30 seconds).

The runtime overhead of the data collector mainly comes from capturing and storing

the packet trace. When the throughput is as high as 600 kbps, the CPU utilization of the

data collector can reach 15% on Nexus One although the overhead is much lower when

the throughput is low. There is no noticeable degradation of user experience when the data

collector is running.

The analyzers were implemented in C++ on Windows 7 (7.5K LoC). The analysis time

for the entire workflow shown in Figure 5.1 is usually less than 5 seconds for a 10-minute

trace. As mentioned in §5.2, ARO configures the RRC analyzer with handset and carrier

specific parameters. Currently our ARO prototype supports one carrier (Carrier 1 in Ta-

ble 3.1) and two types of handsets (HTC TyTn II and Nexus One in Table 3.3). The RRC

analyzer for other carriers can be designed in a way following §3.2. Differences among

handsets mainly lie in radio power consumption and the fast dormancy behavior (§2.5) that

are easy to measure. Also note that TCP, HTTP, and burst analyzers are independent of

specific handset or carrier.

5.5 ARO Use Case Studies

To demonstrate typical usage scenarios of ARO, we present case studies of six real An-

droid applications listed in Table 5.3 and describe their resource inefficiencies identified by

ARO. All applications described in this section are in the “Top Free” section of Android

Market and have been downloaded at least 250,000 times as of December 2010. The hand-

set used for experiments is a Google Nexus One phone with fast dormancy (its α and β

timers are 5 sec and 3 sec, respectively as shown in Figure 2.7). For identified inefficien-

cies, their resource waste is even higher if fast dormancy is not used. All experiments were

performed between September 2010 and November 2010 using Carrier 1’s UMTS network

whose RRC state machine is depicted in Figure 2.2. As of early 2012, some application
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Table 5.3: Case studies of six popular Android applications
App name Mode∗ Traces Description (Recommendations) Similar apps Layers

B 3

High resource overhead of
Pandora periodic audience measurements Fox News, RRC
§5.5.2.1 (Delay transfers and batch them Tune-in Radio App

with delay-sensitive transfers)

F 5

Scattered bursts due to scrolling
RRC

Fox News (Transfer them in one burst)
USA Today App

§5.5.2.2
User

Transferring duplicated contents
NY Times App

(Use the “Expires” HTTP header)

F 10

Inefficient content prefetching

NY Times
(Use HTTP pipelining to transfer TCP
multiple small objects for networks App

BBC News with high bw-delay product)
§5.5.2.3 Scattered bursts of delayed FIN/RST

CBS News, RRC
packets (Close a TCP connection

Google TCP
immediately if possible, or within

Shopper App
the tail time)

Google
F 15

High resource overhead of query Bing
RRC

Search
suggestions and instant search Search,

App
§5.5.2.4

(Balance between functionality and Yahoo
User

resource when battery is low) Search

Tune-in
F 5

Low DCH utilization due to

Radio
constant-bitrate streaming (Buffer NPR Radio, RRC

§5.5.2.5
data and periodically stream data Iheartradio App
in one burst)

F 2

Aggressive ad refresh rate making a
Apps with

Mobclix handset persistently occupy FACH
Mobclix ads

RRC
§5.5.2.6 or DCH (Decrease the refresh rate,

embedded
App

piggyback or batch ad updates)
+ The analyses were performed between September 2010 and November 2010.
∗ Mode B = Background, Mode F = Foreground.
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developers (e.g., Pandora) were actively improving their applications based on findings

brought by the ARO tool.

5.5.1 Experimental Methodology

Our experimental methodology is straightforward: for each application studied, we col-

lected a trace by running the application for at least 5 minutes (except for Google Search),

then used ARO to analyze the trace. Several factors including user behavior randomness,

traffic of non-target applications, and radio link quality, may affect the data collected and

henceforth the analysis results. Clearly, the discovered traffic patterns should be stable in

that they are inherent to the application logic and thus are not affected by user behavior

randomness in common application usage scenarios. To ensure this, for each application,

we analyzed at least 5 traces collected by at least 3 students who used the application as

normal users (except for Pandora and Mobclix that do not involve user interaction). A case

listed in Table 5.3 was reported only if the same symptom was observed in all collected

traces so that we had high confidence that the observed traffic patterns stemmed intrinsi-

cally from the application logic (although it is still useful to learn uncommon problems

from individual traces).

To minimize the impact of non-target applications that concurrently access the network,

we discarded a trace if any of the transferred bytes, the radio energy, or the DCH time

caused by NON TARGET bursts (Table 5.2) was greater than 5% of the total bytes, the total

radio energy, or the total DCH time, respectively. We did similar filtering by examining

TCP LOSS RECOVER bursts. Further, to minimize the impact of poor radio link quality,

we collected all traces at reasonable signal strength conditions.

5.5.2 Results

We now describe case studies for the six applications. As shown in Table 5.3, for each

application, we also found other popular applications with the same problem identified
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Table 5.4: Pandora profiling results (Trace len: 1.45 hours)

Burst type Payloads
Energy DCH

LB UB LB UB
LARGE BURST 96.4% 35.6% 35.9% 42.4% 42.5%
APP PERIOD 0.2% 45.9% 46.7% 40.4% 40.9%

APP 3.2% 12.8% 13.4% 12.4% 12.8%
TCP CONTROL 0.0% 1.2% 1.6% 1.1% 1.5%

TCP LOSS RECOVER 0.2% 0.2% 0.6% 0.3% 0.7%
NON TARGET 0.0% 1.8% 1.8% 1.7% 1.7%

Total 23.6 MB 846 J 895 sec

UL Pkts
DL Pkts
Bursts
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States

Time (s)

P P P P P P PL L

Figure 5.5: Pandora visualization results. “L” (grey) and “P” (red) bursts are
LARGE BURST and APP PERIOD bursts, respectively.

by ARO. The last column of Table 5.3 shows the layers that are related to the identified

inefficiency. RRC, TCP, App, and User correspond to the RRC layer, the transport layer,

the application layer, and the user input layer, respectively.

5.5.2.1 Pandora Streaming

Pandora is a popular music streaming application. We collected three Pandora traces

by simply listening to the music for at least 1 hour for each trace. Table 5.4 shows the

profiling results of one trace, and the results for other traces are qualitatively similar. The

“UB” (upperbound) and “LB” (lowerbound) columns in Table 5.4 refer to the resource

consumption computed by Method 1 and 2 described in §5.3.3, respectively. Numbers in

the “LB” column do not necessarily add up to 100%.

High resource overhead of periodic audience measurements. The profiling results

in Table 5.4 indicate that periodic data transfers (APP PERIOD bursts), which carry only

0.2% of total bytes, account for 46% of total radio energy consumption and 40% of radio
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Table 5.5: Fox News profiling results (Trace len: 10 mins)
Prefetching Phase

Burst type Payloads
Energy DCH

LB UB LB UB
USER INPUT(Click) 91.0% 56.7% 67.6% 60.2% 70.4%
USER INPUT(Scroll) 5.9% 15.2% 17.9% 14.7% 16.7%

APP PERIOD 1.5% 5.2% 7.5% 6.1% 7.4%
TCP CONTROL 0 0.7% 3.7% 0.0% 2.3%

TCP LOSS RECOVER 1.5% 0.7% 2.5% 1.9% 3.2%
SVR NET DELAY 0.1% 0.4% 0.8% 0.0% 0.0%

Total 1.0 MB 276 J 284 sec

resource usage. The detection algorithm in Figure 5.3 further pinpoints that for every 62.5

seconds, Pandora connects to lt.andomedia.com, which provides various real-time

audience measurement services (e.g., monitor online listeners’ favorite radio stations), and

downloads hundreds of bytes. Each such a burst, however, triggers an IDLE→DCH promo-

tion and subsequently two tails of 8 seconds in total. On the other hand, Pandora usually

takes less than 30 seconds to download a song (a LARGE BURST burst) that can be played

for several minutes. As illustrated in Figure 5.5, the total DCH occupation time for pe-

riodic data transfers is similar to or even longer than the music streaming time, although

the former carries much fewer and much less important user data than the latter. The APP

bursts shown in Table 5.4 correspond to non-periodic transfers of album images and other

metadata. Here one straightforward fix is to increase the periodicity. A more intelligent

approach is to batch such delay-tolerant transfers with delay-sensitive transfers to reduce

the overall tail time [14].

5.5.2.2 Fox News

Fox News is a popular news application. We obtained five traces from three users

who browsed the news headlines or articles as they like for at least 5 minutes. Table 5.5

exemplifies profiling results of one representative trace. The results indicate that ARO

is essential in quantitatively breaking down resource consumption into bursts with their
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Figure 5.6: Headlines of the Fox News application. The thumbnail images (highlighted by
the red box) are transferred only when they are displayed as a user scrolls down the screen.
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Figure 5.7: The Fox News results. “U” (green) and “S” (purple) bursts are triggered by
tapping and scrolling the screen, respectively.

triggering factors inferred.

Scattered bursts due to scrolling. Table 5.5 indicates that the majority of resources

are spent on bursts initiated by user interactions. Among them, about 15%∼18% of radio

energy is responsible for bursts generated when a user scrolls the screen. By examining

HTTP responses associated with such bursts, we discover that thumbnail images embedded

in headlines (Figure 5.6) are transferred only when they are displayed as a user scrolls down

the screen. Thus as illustrated in Figure 5.7, when a user browses the headlines, the handset

always occupies the DCH state due to such on-demand transfers of thumbnails. On the other
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hand, each thumbnail has very small size (less than 5KB each). A suggested improvement

is to download all thumbnails (usually less than 15) in one burst. Doing so significantly

shortens the overall DCH occupation time for headline browsing with negligible bandwidth

overhead incurred. We observe this problem for other news applications (e.g., USA Today)

that use the same application framework.

Transferring duplicate contents. The HTTP analyzer (§5.3.1) extracts HTTP ob-

jects from the trace. We discovered that often, the same content is repeatedly transferred,

leading to waste of bandwidth. For example, Fox News fetches the same object http:

//foxnews.com/weather/feed/getWeatherXml whenever a news article is loaded,

and the response from the server (45 KB) is identical unless the weather information,

updated hourly, changes. The problem can be fixed by letting the server put an “Ex-

pires” header in an HTTP response to explicitly tell the client how long the content can

be cached [47].

5.5.2.3 BBC News

BBC News is another news application. Unlike Fox News, which fetches an article

only when a user wants to read it, the network usage of BBC News consists of two phases:

prefetching and user-triggered data fetching.

Inefficient content prefetching. Prefetching happens when a news category (e.g.,

Sports), which is not yet cached or is out-of-date, is selected by a user. In the prefetch-

ing phase, the application downloads the headline page with thumbnails, and more aggres-

sively, contents of all articles of the selected news category in a single large burst. While

it is arguable whether aggressive prefetching, which efficiently utilizes radio resources but

wastes network bandwidth as some contents may not be consumed by end users, is a good

strategy, the prefetching of BBC News is performed inefficiently. It takes up to two minutes

for BBC News to prefetch all articles (e.g., 60 articles in one trace) of a news category. The

HTTP analyzer reveals that the application issues one single HTTP GET for each article,
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Table 5.6: BBC News profiling results
Prefetching Phase (1.4 mins)

Burst type Payloads
Energy DCH

LB UB LB UB
LARGE BURST 100% 100% 100% 100% 100%

Total 1.1 MB 60.1 J 82.8 sec
User-triggered Fetching Phase (8 mins)

Burst type Payloads
Energy DCH

LB UB LB UB
TCP CONTROL 0 11.3% 24.2% 0.0% 5.7%
USER INPUT 98.7% 42.5% 73.1% 37.9% 90.0%

SVR NET DELAY 1% 0.0% 2.7% 0.0% 5.2%
Total 162 KB 145 J 120 sec

UL Pkts
DL Pkts
Bursts

RRC
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Tail
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Figure 5.8: BBC News results: prefetching followed by 4 user-triggered transfers.
“U” (green), “C” (blue), and “L” (grey) bursts are USER INPUT, TCP CONTROL, and
LARGE BURST bursts, respectively.

then waits for the response before issuing the next HTTP GET. A more efficient approach is

HTTP pipelining, i.e., the application sends all 60 URLs in a single HTTP GET and hence

the server transfers all articles without interruption. Given the scenario where many small

objects are transferred in a network of high bandwidth-delay product, HTTP pipelining,

which is widely supported by modern web servers, dramatically improves the throughput

by eliminating unnecessary round trips and allowing more outstanding (i.e., in-flight) data

packets with almost no head-of-line blocking overhead [48].

Scattered bursts due to delayed FIN/RST. After prefetching, clicking on an article

triggers very little traffic. However, as shown in Table 5.6, TCP CONTROL bursts, which do

not carry any user payload, consume 11%∼24% of the radio energy. Such TCP CONTROL
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Figure 5.9: Distribution of delayed time for FIN or RST packets for BBC News and Face-
book applications

bursts are FIN or RST packets, i.e., the application delays closing TCP connections. As

shown in Figure 5.8, they waste radio energy by causing additional FACH occupation time.

Delayed FIN or RST packets are caused by connection timeout maintained by either

an HTTP client or server that uses persistent HTTP connections. Different applications

may use different timeout values since the HTTP 1.1 protocol places no requirements on

how to set the value [49]. We observe that some applications (e.g., Facebook and Amazon

Shopper) always immediately shut down a connection, while BBC News may delay closing

a connection by up to 15 seconds after the last HTTP response is transmitted. In our traces,

50% of its FIN/RST are delayed by at least 5 seconds, which is the α timer value, potentially

triggering a FACH→DCH promotion.

Figure 5.9 plots distributions of delayed time for FIN or RST packets for two applica-

tion traces. Facebook always immediately shuts down a connection, while BBC News may

delay closing a connection by up to 15 seconds after the last HTTP response is transmitted.

We observe from traces that most FIN and RST packets are initiated by a handset instead

of by a server.

Eliminating delayed FIN/RST packets saves resources, but closing a connection too

early may prevent it from being reused, thus incurring additional overhead for establishing

new connections. A compromise is to close the connection before the α timer expires

to avoid a state promotion triggered by delayed FIN/RST. For Carrier 1, doing so further

benefits handset battery life, as usually FIN and RST packets do not reset the α timer
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Figure 5.10: ARO visualization results for Google search

due to their small sizes (§3.1.2). Smartphone OS can help applications properly close

TCP connections by collecting hints from applications and employing different connection

timeout values depending on the carrier type.

5.5.2.4 Google Search

Search is among the most popular browsing activities on smartphones [42]. Almost all

search engines provide real-time query suggestions as a user types keywords in the search

box. We show that such a feature consumes significant radio energy (up to 78%) and radio

resources (up to 76%) by conducting a user study.

Five student users participated in our user study. Each student searched three keywords

in mobile version of Google using Nexus One: “university of michigan”, ”ann arbor”,

and “android 2.2”. A trial is abandoned if any typing mistake was made (typing mistakes

worsen the resource efficiency). The participants were asked to use the query suggestion

whenever possible. Browser caches were cleared before each trial. We believe these key-

words are representative although the length and popularity of keywords may affect the

results.

High resource overhead of real-time query suggestions and instant search. We ob-

tained 15 traces (3 keywords searched by 5 users) which were further analyzed by ARO.

We broke down each trace into three phases: (i) Input Phase, i.e., a user is typing a key-

word. (ii) Search Phase, i.e., after a user submits the keyword, and before the last byte
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Figure 5.11: Breakdown of (a) transferred payload size (b) radio energy (c) DCH occupa-
tion time for searching three keywords in Google. “I”, “S”, “T” correspond to Input Phase,
Searching Phase, and Tail Phase, respectively.

of the search results is received. (iii) Tail Phase, i.e., the remaining time until the RRC

state is demoted to IDLE. An example for searching “university of michigan” is shown in

Figure 5.10. Subsequently, ARO computes transferred payload bytes (Figure 5.11-a), radio

energy consumption (Figure 5.11-b), and DCH time (Figure 5.11-c) for each phase. Each

plot of Figure 5.11 consists of results of the three keywords. For each keyword, “I”, “S”,

and ”T” correspond to Input Phase, Search Phase, and Tail Phase, respectively. Figures 5.10

and 5.11 clearly show that while a user is typing a keyword, real-time query suggestions

keep the handset at DCH, consuming 2.3 to 3.5 times of radio energy and 1.8 to 3.2 times of

DCH time, compared to those consumed by Search Phase. We note that a similar problem

occurs for Google instant search (results appear instantly as a user types a keyword) that is

available for Android since Nov 2010 [50].

Query suggestions and instant search improve user experience. However, realizing their

high resource impact in cellular network, the application can balance between functionality

and resource when the latter becomes a bottleneck (e.g., the battery is critically low). For

example, using historical keywords and a local dictionary to suggest search hints is an
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Table 5.7: Constant bitrate vs. bursty streaming
Name Server bitrate Radio Power
NPR News SHOUTcast 32 kbps+ 36 J/min
Tune-in Icecast 119 kbps 36 J/min
Iheartradio QTSS 32 kbps 36 J/min
Pandora Apache bursty 11.2 J/min
Pandora w/o mes∗ Apache bursty 4.8 J/min
Slacker Apache bursty 10.9 J/min
∗A hypothetical case where all periodic audience measurement
data transfers are removed.
+NPR News also uses a higher bitrate of 128 kbps for some content.

alternative but with worse functionality.

5.5.2.5 Tune-in Radio (and Other Streaming Apps)

The Tune-in Radio application delivers live streams of hundreds of FM/AM radio sta-

tions. Table 5.7 further lists NPR News and Iheartradio, two popular live radio streaming

applications similar to Tune-in Radio. All three applications employ existing radio stream-

ing schemes that work well on wired networks and WiFi: the server streams data at a

constant bitrate (e.g., 32 kbps) to a client without any pause.

Low DCH utilization due to constant-bitrate streaming. In cellular networks, how-

ever, continuously streaming at a constant low bitrate causes considerable inefficiencies on

resource utilization, as a handset is always using the DCH channel, whose available band-

width is significantly under-utilized, whenever a user is listening to the radio. Table 5.7

compares constant-bitrate streaming to the bursty streaming strategy employed by Pandora

and Slacker Radio where a program is buffered in one burst utilizing the maximum avail-

able bandwidth then the application does not access the network while playing the program.

The last column of Table 5.7 indicates that for the two streaming strategies, their energy

efficiency, i.e., the average radio energy consumption for listening to the radio for 1 minute,

differs by up to 7.5 times. For radio programs whose real-time is not strictly required (e.g.,

their delivery can be delayed by one minute), a live streaming server can also perform

90



Table 5.8: Comparing three mobile ad platforms

Name
Default Avg Up- Radio Power

Refresh Rate date Size w/ FD w/o FD
Google Mobile Ad 180.0 sec 6.0 KB 2.5 J/min 3.6 J/min
AdMob 62.5 sec 6.8 KB 5.7 J/min 8.8 J/min
Mobclix 15.0 sec 1.4 KB 23.2 J/min 29.6 J/min

UL Pkts
DL Pkts
Bursts

RRC
States
Time (s)

P
User Input

P P P PU

Figure 5.12: Results for Mobclix (w/o FD). “U” (green) and “P” (red) bursts are
USER INPUT and APP PERIOD bursts, respectively.

similar bursty streaming to save handset energy and radio resources by buffering data and

periodically streaming data in one burst.

5.5.2.6 Mobclix (and Other Mobile Ad Platforms)

We investigate advertisement dissemination strategies for three popular mobile ad plat-

forms: Google Mobile Ad, AdMob, and Mobclix. All platforms allow developers to easily

display ads in their applications by providing simple SDKs. We thus built three toy Android

applications each using one ad platform with its default configuration. Then we employed

ARO to profile each ad-embedded application for five hours, using two Nexus One phones

(Nexus One A and B described in §2.5) where one has a shorter FACH→IDLE timer (3 sec)

due to fast dormancy (the “w/ FD” column in Table 5.8) and the other uses default timers

of Carrier 1 without fast dormancy (the “w/o FD” column). Also note that our toy applica-

tions themselves do not have any network activity so the network traffic is solely generated

by ad modules.

Aggressive ad refresh rate. We discuss the profiling results. As identified by ARO,

all ad platforms by default employ a fixed refresh rate for updating the ads. For example,
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an application using AdMob pings r.admob.com for every 62.5 sec. Then the server

may either push a new ad or let the application display the existing ad. Surprisingly, as

summarized in Table 5.8, the three platforms use considerably different refresh rates, lead-

ing to remarkable disparity of their radio power consumption, especially for applications

without network activities (e.g., games). In particular, as illustrated in Figure 5.12, Mob-

clix employs an aggressive refresh rate of 15 sec that is even shorter than the default tail

time of Carrier 1 (17 sec when fast dormancy is not used), making the handset persistently

occupying DCH or FACH whenever the application is running.

5.6 Summary

We have presented ARO, the first tool that exposes the cross-layer interaction for layers

ranging from radio resource control to application layer. We have demonstrated using

popular mobile applications that ARO helps reveal several previously unknown, general

categories of inefficient resource usage, affecting distinct classes of mobile applications

due to a lack of transparency in the lower-layer protocol behaviors. In particular, we are

starting to contact developers of popular applications such as Pandora. The feedback has

been encouragingly positive as the provided technique greatly helps developers identify

resource usage inefficiencies and improve their applications [40]. The ARO prototype [51]

has been productized by AT&T and is now available to developers [52].

Our work opens and enables new research opportunities for (i) analyzing other cross-

layer information (e.g., cellular handoff events, OS events, and application activities) for

more fine-grained diagnosis of performance and resource utilization inefficiencies, and (ii)

providing automated mitigation solutions to identified inefficiencies. We plan to explore

them in our future work.
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CHAPTER VI

Optimizing Radio Resource Usage Through Adaptive

Resource Release

6.1 Introduction

Chapter IV indicates that the tail effect (§2.1.3) causes significant resource inefficiency

in cellular networks due to the fundamental tradeoff in resource allocation (§2.4). The ARO

tool introduced in Chapter V mitigates this by identifying inefficient traffic bursts so they

can be potentially optimized to reduce the tail time (e.g., grouping several bursts into a

single large burst). But it does not work for all types of traffic patterns. For example, it is

difficult to use ARO to optimize web browsing traffic consisting of delay-sensitive bursts

initiated by users.

In this chapter, we address the problem of mitigating the tail effect by leveraging the

fast dormancy feature described in §2.5. It is complementary to the handset-based traffic

shaping approach, with more general applicability. Before introducing our proposed so-

lution, let us first revisit existing approaches for tail removal, which can be classified into

three categories.

Tuning inactivity timers. Previous work [19, 20] propose tuning inactivity timers us-

ing analytical models by considering radio resource utilization, handset energy consump-

tion, service quality, and processing overheads of the radio access network. However,
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mitigating the tail effect requires reducing the inactivity timers. Doing so inevitably causes

the number of state transitions to increase. Based on our measurements using real traces

collected from a large UMTS carrier, we found that aggressively reducing the most criti-

cal timer from 5s to 0.5s reduces the tail time by 50%, but increases the state promotion

delay by about 300%. This introduces significant processing overhead for the radio access

network [13], and increased delay for users.

Handset-based approach. The handset alters traffic patterns based on the prior knowl-

edge of the RRC state machine. For delay-tolerant applications such as Email and RSS

feeds, data transfers can be delayed and batched to reduce the tail time [14]. However, as

mentioned before, such an approach is not suitable for more interactive applications such

as Web browsing, otherwise users may suffer from delayed processing of their requests.

Cooperation between the handset and the network. The handset applications may

be able to predict the end of a data transfer based on the application logic. If an idle time pe-

riod that lasts at least as long as as the inactivity timer value is predicted, the handset sends

a message to notify the network, which then immediately releases allocated resources. This

approach can thus completely eliminate the tail if the prediction is accurate, without incur-

ring additional promotion delays. As mentioned in §2.5, a feature called Fast Dormancy

has been proposed to be included in 3GPP [23] to help realize this approach. Note that

although this is a standard already adopted by several handsets [24], to the best of our

knowledge, no smartphone application to date uses fast dormancy, partly due to a lack of

OS support, as discussed in §4.5.2.

In this chapter, we propose Tail Optimization Protocol (TOP), an application-layer pro-

tocol that bridges the gap between the application and the fast dormancy support provided

by the network. Some of the key challenges we address include the required changes to

the OS, applications, and the implication of multiple concurrent connections using fast dor-

mancy. In particular, TOP addresses three key issues associated with allowing smartphone

applications to benefit from this support.
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First, our work is the first to propose a simple interface for different applications to

leverage the fast dormancy feature. In our framework, applications define their logical

transfers and perform predictions of inter-transfer times. The prediction can be easy ac-

complished for applications having limited or no user interaction (e.g., video streaming),

but it is more challenging for user-interactive applications such as Web browsing. The pre-

diction methodology is not our focus in this work. The application invokes a tail removal

API provided by TOP that automatically coordinates concurrent traffic of multiple applica-

tions, as state transitions are determined by the aggregated traffic of all applications. Our

design minimizes applications’ implementation overhead for tail removal. Note that our

proposed framework is also applicable to the 3G EvDO (Evolution-Data Optimized) and

the 4G LTE (Long Term Evolution) cellular networks that also use inactivity timers for

releasing radio resources and therefore have the tail effect [10, 53].

Second, by using cellular traces collected from a large UMTS carrier, we are the first

to quantify the tail effect for nearly a million user sessions. We found that for the two

RRC states, 34.4% and 76.8% of the time is spent on the tail. By using the traces, we

also empirically derive critical parameters used by TOP to properly balance the tradeoff

between the resource saving and the state transition overhead.

Third, we demonstrate the benefits of TOP using real traces collected from a UMTS

carrier and from our Android smartphones. With a reasonable prediction accuracy, TOP

saves the overall radio energy (up to 17%) and radio resources (up to 14%) by reducing

up to 60% of the tail time. For some applications such as multimedia streaming, TOP can

achieve even more significant savings of radio energy (up to 60%) and radio resources (up

to 50%).

The rest of this chapter is organized as follows. §6.2 provides an overview of our pro-

posal. §6.3 describes the cellular measurement data used in this chapter. After empirically

quantifying the tail effect using our dataset in §6.4, we describe our proposed Tail Op-

timization Protocol (TOP) in §6.5 and evaluate it in §6.6 before concluding the chapter
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in §6.7.

6.2 Overview

The high-level idea behind our proposed Tail Optimization Protocol (TOP) is straight-

forward. It involves invoking the fast dormancy support (§2.5) that directly triggers a

DCH→IDLE or a FACH→IDLE demotion without experiencing timeout periods, in or-

der to save radio energy and radio resources. However, doing so aggressively may incur

unacceptably long delay of state promotions, worsening user experience and increasing

processing overheads at the RNC. TOP employs a set of novel techniques to address this

key challenge by letting individual applications predict tails and coordinating tail predic-

tion of concurrent applications for invoking fast dormancy. Our design requires no changes

at a handset’s firmware/hardware given that fast dormancy is widely deployed, and is trans-

parent to the radio access network.

• TOP leverages the knowledge of applications that predict the idle period after each

data transfer. The definition of a data transfer depends on the application. Fast dor-

mancy is not invoked if the predicted idle period is smaller than a predefined thresh-

old called tail threshold to prevent unnecessary state promotions (§6.5.1).

• As described in §6.5.3, we carefully tune the value of the tail threshold and other pa-

rameters used by TOP by empirically measuring traces collected from a large UMTS

carrier (§6.3), in order to well balance the tradeoff (§6.4.2) between the incurred state

promotion overhead and resource savings.

• The RRC state transitions are determined by the aggregated traffic of all applications

running on a handset. TOP introduces a novel coordination algorithm to handle con-

current network activities. TOP also handles tail optimization for legacy applications

that are themselves unaware of TOP. We detail the coordination algorithm design

in §6.5.
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6.3 The Measurement Data

This section describes the data used in our study. Our dataset is a large TCP header

packet trace collected from Carrier 1 on April 13, 2009 in the normal course of operations.

The collection point is at the core network (CN) that primarily serves UMTS users but also

2G GPRS users. Our trace contains 265 million TCP packets (169 GB data) continuously

captured in 1.3 hours without any sampling in either direction. Due to concerns of the

large traffic volume and user privacy issues, we only recorded TCP/IP headers and a 64-bit

timestamp for each packet, but no subscriber IDs or phone numbers.

We subsequently extract sessions from the trace, each consisting of all packets trans-

ferred by the same handset identified through the private client IP address in the trace.

Multiple TCP flows from concurrent applications may be mixed in the same session. We

use a threshold of 60 sec of idle time to detect session termination. A different threshold

value, e.g., 45 or 75 sec, does not qualitatively affect the analysis results.

We will use this dataset in §6.4.1, §6.5.3, and §6.6.1. Our common methodology is to

replay sessions against a program simulating the RRC state machine with desired settings,

and a tail removal algorithm to be studied, e.g., TOP, to obtain statistics about the state

machine’s behavior. Before that, timestamps of the original trace were first calibrated to

eliminate promotion delays caused by the existing state machine of Carrier 1. We detail the

calibration methodology in our measurement work [5]. Then the calibrated trace, whose

promotion delays are zero, can be applied to a different state machine, and new promotion

delays are injected separately by the simulator. The calibration procedure also detects

sessions (about 17%) that violate the RRC state machine. Such sessions are mostly caused

by non-UMTS traffic mixed in the trace. They are not used in our subsequent data analysis.
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Figure 6.1: Breakdown of the duration of all sessions for Carrier 1

6.4 The Tail Effect

We briefly revisit the cellular tail effect described in §2.1.3. At DCH or FACH, when

there is no user data transmission in either direction for at least T seconds, i.e., the inactivity

timer value, the RRC state will be demoted to save radio resources and handset energy.

However, during the wait time of T seconds, a handset still occupies the transmission

channel and WCDMA codes, and its radio power consumption is kept at the corresponding

level of the state. We define a tail as the idle time period matching the inactivity timer value

before a state demotion. We also refer to any non-tail time as active.

In typical UMTS networks, each handset is allocated dedicated channels whose radio

resources are completely wasted during the tail time. For HSDPA [3], which is a UMTS

extension with higher downlink speed described in §2.1.2, although the high speed trans-

port channel is shared by a limited number of handsets (e.g., 32), occupying it during the

tail time can potentially prevent other handsets from using the high speed channel. Fur-

thermore, tail time wastes handset radio energy, which contributes to up to half of the total

battery energy consumption of a handset based on our measurements using a power meter

in §3.2.2.1.

6.4.1 Measuring the Tail Time

We quantify the tail time by studying the trace described in §6.3. We feed the 0.82

million calibrated sessions into a simulator (§3.2) for Carrier 1’s state machine whose state
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machine transitions and parameters are shown in Figure 2.2 and Table 3.1. We decompose

the total duration of all sessions into six components: DCH active time, DCH tail time,

FACH active time, FACH tail time, the FACH→DCH promotion delay, and the IDLE→DCH

promotion delay, and then plot the fraction of each component in Figure 6.1, which clearly

shows that considerable amount of time on DCH and FACH is wasted by the tail effect. On

DCH, 34.4% of the time belongs to the tail, and on FACH, 76.8% of the time is spent on the

tail, which is even longer than the FACH active time, as the β (FACH→IDLE) timer is set

to be as long as 12 seconds. For Carrier 2, 35.3% and 72.0% of the DCH and FACH time

belong to the tail, respectively.

6.4.2 Tradeoff Considerations to Optimize Radio Resources

From the carrier’s perspective, the most naı̈ve way to mitigate the tail effect is to reduce

the inactivity timer values. However, doing so inevitably increases the signaling load.

This is the key tradeoff discussed at the beginning of the dissertation (§2.4). Similar to

our analysis for changing the inactivity timer values (§4.4), we quantify the tradeoff using

the resource consumption D, the signaling overhead S, and the handset radio energy E.

Besides them, we use DT to denote radio resources wasted on DCH tails, so D consists of

DT and radio resources spent on non-tail DCH times. We compute DT , D, S and E using

the simulation-based approach described in §3.4.

When changing inactivity timer values or using a new technique for tail removal, we

are interested in relative changes ofD, S, E, andDT compared to the default setting where

we use the default state machine parameters (Table 3.1) without removing tails. We capture

this using ∆D, ∆S, ∆E, and ∆DT introduced in §2.4. For example, Let DT
1 and DT

0 be

the DCH tail time in the new setting and in the default setting, respectively. The relative

change ofDT , denoted as ∆DT , is computed by ∆DT = (DT
1 −DT

0 )/DT
0 . We have similar

definitions for ∆D, ∆S and ∆E, which will be revisited in §6.5.3 and §6.6.
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6.5 Tail Optimization Protocol

In this section, we describe our proposed Tail Optimization Protocol (TOP), an application-

layer protocol that leverages the support of fast dormancy to remove tails. In TOP, applica-

tions define data transfers and predict the inter-transfer time at the end of each data transfer

(§6.5.1) using a simple interface described in §6.5.2. If the predicted inter-transfer time is

greater than a tail threshold, the application informs the RNC to initiate fast dormancy. We

discuss how to set the tail threshold in §6.5.3 and describe how TOP handles concurrent

network activities in §6.5.4.

Our design of TOP requires small changes at handset applications (and optionally server

applications, as a server may provide a handset with hints about predicting a tail) and the

handset OS, but no change at a handset’s firmware/hardware given that fast dormancy is

widely deployed. Also TOP is transparent to the UTRAN and CN. Therefore TOP is incre-

mentally deployable. Note that the TTT message (i.e., the fast dormancy request, see §2.5) is

already supported by the RNC [23].

6.5.1 Feasibility of Tail Prediction

From applications’ perspective, tail eliminations are performed for each data transfer,

defined by applications to capture a network usage period. For example, a data transfer can

correspond to all packets belonging to the same HTML page. To use TOP, an application

only needs to do two things.

1. Ensure that the current data transfer has ended.

2. Provide TOP with its predicted delay between the current and the next data transfer,

denoted as the inter-transfer time (ITT), via a simple interface described in §6.5.2.

ITT is essentially the packet inter-arrival time between the last packet of a transfer

and the first packet of the next transfer. Note that downlink (DL) and uplink (UL)

packets are not differentiated as both use the same state machine.
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We first consider the most simple scenario with no concurrent network activities. TOP

sends a TTT message (i.e., invoking fast dormancy) to eliminate the tail if the predicted ITT

is longer than a threshold called Tail Threshold (TT). A large value of TT limits the radio

resource and energy savings achieved by TOP while a small TT incurs extra state promo-

tions. We justify how we choose TT in §6.5.3.

Clearly, the ITT prediction is application specific. It is easier to predict for applications

with regular traffic patterns, with limited or no user interaction (e.g., video streaming), but

it is more difficult for user-interactive applications such as Web browsing and Google Map,

as user behaviors inject randomness to the packet timing. For example, in Web browsing,

each transfer corresponds to downloading one HTML page with all embedded objects. The

browser knows exactly when the page has been fully downloaded. However, the timing

gap between two consecutive transfers may be shorter than the tail threshold (e.g., a user

can quickly navigate between pages). Thus the browser should selectively invoke TOP. The

second example is multimedia streaming. A streaming transfer consists of a single burst of

packets of video/audio content (§6.6.2.1). The application usually can predict termination

of a streaming burst. TOP can be applied if the timing gap between two consecutive bursts

(usually known by the application) is longer than TT. As another example, interactive map

applications involve continuous user interactions, thus TOP may not be applicable as it is

very hard to define a transfer.

There are two issues related to ITT prediction. First, applications may not predict ITT

accurately: misprediction can lead to increased promotion overhead due to predicting a

short ITT less than TT to be a long ITT greater than TT, or lead to missing opportunities for

tail removal due to predicting a long ITT to be short. A comprehensive study of prediction

methodologies for interactive applications such as Web browsing is beyond the scope of this

chapter and is our ongoing work. Here we assume ITTs are predicted with a reasonable

accuracy (e.g., 80% to 90%).
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The second issue is that, the existence of concurrently running applications and inde-

pendent components of the same application (e.g., a streaming application with an adver-

tisement bar embedded) further complicates tail prediction. Clearly applications cannot

predict other applications’ concurrent network activities that affect state transitions. But

there is a need to look across applications when deciding whether to invoke fast dormancy.

TOP is responsible for handling the concurrency as will be described in §6.5.4.

We also considered an alternative approach where the prediction is performed by the

network instead of on the phone. In spite of the advantages of reducing the prediction

overhead on handsets (the overhead is assumed to be small though), doing so has several

limitations:

• Compared to mobile applications, the network has much less knowledge about the

application logic, which in many cases determines the traffic patterns, leading to

lower prediction accuracy of ITT.

• Compared to the data that can be collected on a handset, the information available

to the network is much more limited. For example, user input and system events are

potentially useful features for ITT prediction, but it is impossible for the network to

obtain them.

• It is very difficult for the network to perform per-flow based or per-application based

prediction, resulting in lower prediction accuracy when concurrency exists (§6.5.4).

• The handset-based prediction is more scalable than the network-based approach.

6.5.2 The Interface for Tail Removal

Unlike applications, TOP is unaware of the way applications define their transfers. TOP

instead schedules tail removal requests at the connection level. A connection is defined as

usual by five tuples: srcIP, dstIP, srcPort, dstPort, and protocol (TCP/UDP). Note that it is
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possible that either one connection contains multiple transfers or one transfer involves mul-

tiple connections. At the end of a transfer, after the last packet is transmitted, an application

informs TOP via a simple API

TerminateTail(c, δ)

that the predicted ITT of connection c is δ. In other words, the next UL/DL packet of

connection c belongs to the next transfer and will arrive after δ time units.

When user interactions are involved, it may be difficult for applications to predict the

exact value of ITT. An application can then performs binary prediction i.e., whether ITT ≤

TT or ITT > TT . The API is only called in the latter case: if ITT is predicted to be greater

than TT, then TerminateTail(c, δ) is invoked with δ set to a fixed large value (e.g.,

60 sec). In fact, when no concurrent network activities exist, the exact prediction of ITT is

not necessary at all as long as the binary prediction is correct.

On the other hand, when concurrency exists, the predicted ITT value may affect how

fast dormancy is invoked. Let the real ITT be δ0 and the predicted ITT be δ. Underestimat-

ing δ0 (δ < δ0) may prevent other concurrent applications from invoking fast dormancy and

overestimating δ0 (δ > δ0) may incur additional state promotions. However, based on our

empirical evaluation using real cellular traces in §6.6, we found that as long as the binary

prediction is correct, the actual prediction value of ITT is much less important.

Calling TerminateTail(c, δ) indicates that the next transfer belongs to an es-

tablished connection c. Also an application may start the next transfer by establishing a

new connection that does not exist when TerminateTail is called. For example, a Web

browser may use a new TCP connection for fetching a new page. Suppose that at the end

of a connection c, the application makes a prediction that the next transfer initiates a new

connection and the ITT is δ. In that case, the application needs to make two consecutive

calls:

1. TerminateTail(null, δ), indicating that a new connection will be established

after δ time. The first parameter is null as the application does not know about the
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Figure 6.2: Impact of Tail Threshold (TT) on (a) ∆S (b) ∆DT

future connection.

2. TerminateTail(c, ∞), indicating the termination of c and the termination of

the current transfer. Note that the two calls trigger at most one TTT message. We

explain why the second call is necessary in §6.5.4.

6.5.3 Determining the Tail Threshold Value

A tail threshold (TT) is used by TOP to determine whether to send a TTT message when

TerminateTail is called. When no concurrency exists, TOP sends a TTT message if and

only if the predicted ITT is greater than TT. A large value of TT may limit radio resource

and energy savings, and a small TT may incur extra state promotions.

Usually a handset is at DCH when a transfer ends. Assuming this, a TTT message trig-

gers a DCH→IDLE demotion. However, in the current state machine setting, a handset

will experience two state demotions: DCH→FACH with duration of α, and FACH→IDLE

with duration of β. Therefore, the default value of TT should be α + β to match the orig-

inal behavior. In other words, assuming the predicted ITT is δ, to ensure no additional

promotion occurs (if predictions are correct), TOP should not send a TTT message unless

δ > α + β = TT . However, such a default value of TT is large (17 sec for Carrier 1 and

10 sec for Carrier 2), limiting the effectiveness of TOP.

The key observation here is based on our empirical measurement shown in Figure 6.2(a),
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which is generated as follows. We replay calibrated sessions (§6.3) against both carriers’

state machines with different TT values, assuming that a TTT message is sent whenever the

packet inter-arrival time is greater than TT. We measure the change of the total duration of

state promotions ∆S (§6.4.2). As expected, ∆S monotonically decreases as TT increases,

and reaches zero when TT = α + β. Also we empirically observe that reducing TT to

the value of α incurs limited promotion overhead: 22% and 7% for Carrier 1 and Carrier 2,

respectively. Note that given a fixed TT, Carrier 1 has a higher promotion overhead because

it has a much longer β timer. On the other hand, as shown in Figure 6.2(b), which plots

the relationship between TT and the change of the total DCH tail time ∆DT , setting TT to

α + β saves only 35% and 61% of the DCH tail time for the two carriers, respectively, but

reducing TT to α eliminates all DCH tails (i.e., ∆DT = −1). Therefore we set TT to α

since it better balances the tradeoff described in §6.4.2.

6.5.4 Handling concurrent network activities

Tail elimination is performed for each data transfer determined by the application. As

described in §6.5.1, an application only ensures that the delay between consecutive trans-

fers is longer than the tail threshold, without considering other applications. However, RRC

state transitions are determined by the aggregated traffic of all applications. Therefore, al-

lowing every application to sendTTT messages independently causes problems. For example,

at time t1, TOP sends a TTT message for Application 1 to cut its tail. But a packet transmitted

by Application 2 at t2 will trigger an unnecessary promotion if t2 − t1 < TT .

Ideally, if all connections can precisely predict the packet inter-arrival time, then there

exists an optimal algorithm to determine whether to send the TTT message. The algorithm

aggregates prediction across connections by effectively treating all network activities as

part of the same connection, so that fast dormancy is triggered only when the combined

ITT exceeds TT. At a given time t, let a1, ..., an be the predicted arrival time of the next

packet for each connection, then TOP should send a TTT packet if min{ai} − t > TT .
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In practice, however, TOP faces two challenges. First, as mentioned in §6.5.1, applica-

tions perform predictions at transfer level. Therefore no prediction information is available

except for the last packet of a transfer. This may incur additional promotions if, for exam-

ple, Connection c1 invokes fast dormancy when Connection c2 is in the middle of a transfer.

Second, legacy applications are unaware of TOP and some applications may not use TOP

due to their particular traffic patterns. To handle both issues, we design a simple and robust

coordination algorithm described below.

The algorithm considers two cases to determine whether to send a TTT message for fast

dormancy. First, for all connections with ITT prediction information, that is, TerminateTail

is called but the next packet has not yet arrived, fast dormancy is triggered only when the

combined ITT exceeds the tail threshold. Second, we apply a simple heuristic to handle

connections without ITT being predicted, because either those connections are not at the

end of a transfer (TerminateTail is not called after transmitting a packet in the middle

of a transfer) or they do not use TOP (TerminateTail is never called). If such connec-

tions exist, a TTT message is not sent if any of them has recent packet transmission activity

within the past p seconds where p is a predefined parameter, as for an active connection, a

recent packet transmission usually indicates another packet will be transmitted in the near

future. Not sending a TTT message at such a case reduces additional promotions. We set p to

α based on our empirical measurement similar to the one described in §6.5.3.

We now describe the coordination algorithm in detail by referring to the pseudo code

listed in Figure 6.3. The algorithm maintains three states for each connection. ts and

predict correspond to the timestamp of the last observed packet, and the predicted arrival

time of the next packet, respectively (Line 2-3). We explain the dummy state shortly.

Whenever an incoming or outgoing packet of connection c arrives, c.ts is updated to tscur,

the current timestamp, and c.predict is set to null, indicating that no prediction information

is currently available for connection c (Line 27-30). At the end of a transfer, after the last

packet is transmitted, an application calls TerminateTail(c, δ). Then TOP updates
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01 struct CONNECTION {//per-conn. states maintained by TOP
02 TIME STAMP predict;
03 TIME STAMP ts;
04 BOOLEAN dummy; //false for any existing connection
05 };
06 TerminateTail(CONNECTION c, ITT δ) {
07 foreach conn in Connections{ //handle out-of-date predictions
08 if (conn.predict < tscur) { //tscur is the current timestamp
09 if (conn.dummy = true)
10 {Connections.remove(conn);}
11 else {conn.predict← null;}
12 }
13 }
14 if (c = null) { //create a dummy connection established soon
15 c← new CONNECTION;
16 c.dummy ← true;
17 Connections.add(c);
18 }
19 c.predict← tscur + δ; //update the prediction
20 foreach c′ in Connections{ //check the two constraints
21 if ((c′.predict 6= null && c′.predict < tscur + α)
22 || (c′.predict = null && c′.ts > tscur − α))
23 {return;} //fast dormancy is not invoked
24 }
25 send TTT message;
26 }
27 NewPacketArrival(CONNECTION c) {
28 c.ts = tscur;
29 c.predict← null;
30 }

Figure 6.3: The coordination algorithm of TOP
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c.predict to tscur+δ (Line 19) and sends aTTT message if both conditions hold (Line 20-25).

min
c′
{c′.predict 6= null} > tscur + TT (6.1)

∀c′ : c′.predict = null→ c′.ts < tscur − p (6.2)

where c′ goes over all connections and “→” denotes implication. Equation (6.1) and (6.2)

represent two aforementioned cases where connections are with and without prediction

information, respectively. Note that both the tail threshold TT in Equation (6.1) (Line 21)

and the p value in Equation (6.2) (Line 22) are both empirically set to α.

Recall that in §6.5.2, when the next transfer starts in a new connection, an application

calls TerminateTail(null, δ) then TerminateTail(c, ∞) at the end of con-

nection c, which is also the end of current transfer. TOP handles the first call by creating

a dummy connection cd (Line 14-18) with cd.predict = tscur + δ, and cd is considered in

Equation (6.1). The dummy connection cd is removed when its prediction is out-of-date

i.e., tscur > cd.predict (Line 9-10). For an established (i.e., not dummy) connection c,

c.predict is set to null (no prediction information) when it is out-of-date (Line 11), and c

is removed i.e., not considered by Equation (6.1) or (6.2), when c is closed.

An application may call TerminateTail(null, δ) at tscur, immediately after the

last packet of connection c is transmitted. However, it is possible that at tscur, c is not yet

removed by TOP although no packet of cwill appear. In this case, c.ts, the timestamp of the

last packet of c, is very close to tscur, making Equation (6.2) not hold. Thus a TTT message

will never be sent. The problem is addressed by the second call TerminateTail(c,

∞) that sets c.predict = ∞. Therefore making two calls guarantees that a TTT message is

properly sent even if c is not timely removed.

An application abusing fast dormancy can make a handset send a large amount of TTT

messages, each of which may cause a state demotion to IDLE followed by a promotion

triggered by a packet, in a short period. To prevent such a pathological case, TOP sends at
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most one TTT message for every t seconds even if multiple TTT messages are allowed by the

constraints of Equation (6.1) and (6.2)(not shown in the pseudo code). This guarantees that

repeatedly calling TerminateTail is harmless, and that the frequency of the additional

state promotions caused by TOP is no more than one per t seconds. We empirically found

that setting t to 6 to 10 seconds has negligible adverse impact on resource savings for

normal usage of TOP.

We notice that the major runtime overhead of TOP is to intercept packets and to record

their timestamps (Line 27-30). We implemented a kernel module for that task on an An-

droid G2 smartphone. By measuring the additional CPU utilization, we found that the

runtime overhead is negligible regardless of the network throughput.

6.6 Evaluation

We use real traces to demonstrate radio resource and energy savings brought by TOP,

focusing on evaluating how well TOP handles concurrent network activities. In §6.6.1, we

use the passive trace described in §6.3 to study the impact of TOP on a large number of

users. In §6.6.2, we perform case studies of two applications using traces locally collected

by Tcpdump from an Android G2 phone.

We use ∆D, ∆DT , ∆E, and ∆S defined in §6.4.2 as evaluation metrics. They are

computed using the simulation-based approach described in §6.3. The comparison baseline

is the default state machine configuration without using a tail removal technique for the

same carrier. For TOP, we set both TT (§6.5.3) and p (§6.5.4) to the α timer value. TOP

sends at most one TTT message for every t = 10 seconds.

6.6.1 Evaluation using passive traces

The evaluation is performed at a per-session basis using the calibrated passive trace de-

scribed in §6.3. For each session, we extract connections (defined by 5-tuples) and classify

them into four types by the port number of the TCP peer of a handset, since only TCP head-
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ers are available: Web (80, 443, 8080), Email (993, 995, 143, 110, 25), Sync (a popular

synchronization service of Carrier 1 using a special port number), and Other (all other port

numbers). They contribute to 78.8%, 15.1%, 0.2%, and 5.9% of the total traffic volume,

respectively. We use a threshold of 10 sec of idle time to decide that a connection has

terminated. Changing this value does not qualitatively affect the simulation results.

For simplicity, we assume that there are four applications, each involving one traffic

type, running on smartphones. For Web, Email, and Sync applications, a transfer is defined

as consecutive connections of the same traffic type whose inter-connection time (the inter-

val between the last packet of one connection and the first packet of the next connection)

is less than 1 sec. Note that a transfer may consist of multiple connections and connections

may overlap (e.g., concurrent connections supported by smartphone browsers). At the end

of each transfer, each application independently calls TerminateTail with probability

of z, which quantifies the applicability of TOP, to perform binary predictions (whether ITT

is greater than TT, see §6.5.2) with accuracy of w. In other words, the probabilities of a

correct prediction, an incorrect prediction, and no prediction (TerminateTail is not in-

voked) are zw, z(1− w), and 1− z, respectively. Since binary predictions are performed,

each application uses an ITT of 60 sec if the ITT is predicted to be greater than TT. Varying

this from 30 sec to infinity, or using the exact prediction value of ITT changes the results

in Figure 6.4 by no more than 0.01. We assume that the “Other” application is unaware of

TOP.

Figure 6.4 plots the impact of TOP on ∆E, ∆S, ∆DT , and ∆D by varying w and z

for Carrier 1. In each plot, the z = 0 curve is a horizontal line at y = 0 corresponding

to the comparison baseline i.e., the default case where TOP or fast dormancy is not used.

Figure 6.4 clearly shows that, increasing z, the applicability of TOP, brings more savings

at the cost of increasing the state promotion delay. On the other hand, increasing w, the

prediction accuracy, not only benefits resource savings but also reduces the state promotion

overhead. Under the case where z = 0.8 and w = 90%, TOP saves the overall radio
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Figure 6.4: Evaluation of TOP using the passive trace from Carrier 1: (a)∆E (b)∆S
(c)∆DT (d)∆D

111



energy E, the DCH tail time DT , and the total DCH time D by 17.4%, 55.5%, and 11.7%,

respectively, with the state promotion delay S increasing by 14.8%. The results for Carrier

2 show similar trends. Under the condition of z = 0.8 and w = 90%, TOP can save E, DT ,

and D by 14.9%, 60.1%, and 14.3%, respectively with S increasing by 9.0%.

We compare TOP with other schemes for saving the tail time. In each plot of Figure 6.5,

the X axis is the state promotion delay ∆S, and the Y axis corresponds to saved resources

(∆E, ∆DT , or ∆D) for Carrier 2. A more downward or leftward curve indicates a better

saving scheme since given a fixed ∆S, we prefer a more negative value of ∆E, ∆DT , or

∆D indicating higher resource savings. Each plot of Figure 6.5 contains four curves. The

“TOP” curve corresponds to using TOP with w = 80% and z being varied from 0.5 to 1.0.

The “FD” (fast dormancy) curve is generated using the same parameters, but in the “FD”

scheme, applications use fast dormancy without being scheduled by TOP. In other words,

an application (Web, Email, or Sync) sends a TTT message whenever its predicted ITT is

greater than TT. The “timer” curve corresponds to a strategy of proportionally decreasing

α and β timers that affect all sessions in the trace.

The “TE” curve denotes employing TailEnder [14] to save energy and radio resources.

As described in §6.1, for delay-tolerant applications, their data transfers can be delayed and

batched to reduce the tail time. TailEnder is a scheduling algorithm that schedules transfers

to minimize the energy consumption while meeting user-specified deadlines by delaying

transfers and transmitting them together. The TailEnder algorithm was implemented in

our simulator using the default parameters described in [14]. We apply TailEnder on all

Email and Sync transfers and vary the deadline (the maximally tolerated delay) from 0 to

5 minutes. A longer deadline can potentially save more resources but a user has to wait for

longer time.

We discuss the results in Figure 6.5. TOP outperforms fast-dormancy (FD), whose

curve lies on the right of the “TOP” curve. To achieve the same savings in D, E, and DT ,

the state promotion delay of TOP is always less than that of FD by 10% of the overall pro-
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Figure 6.5: Comparison of four schemes of saving tail time for Carrier 2: (a)∆S vs. ∆E
(b)∆S vs. ∆DT (c)∆S vs. ∆D
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motion delay in the default scheme. Further, reducing inactivity timers incurs additional

state promotions, overwhelming the savings of D and E. The fundamental reason for this

is the static nature of the inactivity timer paradigm where all packets experience the same

timeout period. We also notice that TailEnder can reduce the overall state promotion delay

(as indicated by the negative ∆S values) due to its batching strategy. However, its appli-

cability is very limited, yielding much less savings, and it incurs additional waiting time

for users. The comparison results for Carrier 1 is qualitatively similar, implying that in-

voking fast dormancy with a reasonable prediction accuracy (around 80%) surpasses the

traditional approach of tuning inactivity timers in balancing the tradeoff, and TOP’s coor-

dination algorithm effectively reduces the state promotion overhead caused by concurrent

network activities.

6.6.2 Evaluation using locally collected traces

We perform case studies of two applications (Pandora streaming and Web browsing)

using traces locally collected from an Android G2 phone using Carrier 2’s UMTS network.

We investigate each application separately without injecting concurrent traffic, then apply

the coordination algorithm on the aggregated traffic of both applications.

6.6.2.1 Pandora radio streaming

Pandora [30] is an Internet radio application. We collected a 30-min trace using Tcp-

dump by logging onto one author’s Pandora account, selecting a pre-defined radio station,

then listening to seven tracks (songs). By analyzing the trace, we found that the Pandora

traffic consists of two components: the audio/control traffic and the advertisement traffic.

Before a track is over, the content of the next track is transferred in one burst utilizing the

maximal bandwidth. Then at the exact moment of switching to the next track, a small traffic

burst of control messages is generated. The second component is periodical advertisement

traffic from an Amazon EC2 server for every one minute. Each such burst can trigger an
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Table 6.1: Impact of TOP on Pandora
∆DT -100%
∆D -50.1%
∆S 3%
∆E -59.2%

Table 6.2: Impact of TOP on traces of three websites
Website m.cnn.com amazon.com m.facebook.com

% long ITT 91.2±4.8% 91.4±6.5% 38.1±5.9%
∆DT -90.7% -88.7% -36.7%
∆D -51.4% -48.0% -22.2%
∆E -61.1% -57.4% -21.6%
∆S +8.4% +9.8% +51.5%

IDLE→DCH promotion.

We apply TOP on the trace by regarding each data/control burst and each advertisement

burst as a transfer. The results in Table 6.1 indicate that TOP achieves remarkably good

resource savings for traffic patterns consisting of bursts separated by long timing gaps.

TOP eliminates all tails that contribute to about half of the total DCH time with the state

promotion delay increasing by 3% regardless of using binary or exact prediction of ITT.

The radio energy usage decreases by 59%.

6.6.2.2 Web Browsing

We show the applicability of TOP to Web browsing. As described in §6.5.1, here a

transfer can be naturally defined as packets belonging to the same Web page (including

embedded objects) downloaded in a burst. Usually a browser can precisely know the ter-

mination of a transfer, and the challenging part is to predict inter-transfer times (ITTs) that

involve user interactions, as a page download is mostly triggered by clicking a link, and

ITTs correspond to a user’s reading or thinking time. A comprehensive study of the pre-

diction methodology is beyond the scope of this chapter. Here we describe our preliminary

study showing that even very simple heuristics can lead to good prediction results for some

popular websites.
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We simultaneously collected user input event traces (e.g., tapping the screen) and packet

traces from eight users while they visited the three websites listed in Table 6.2. The traces

we collected have a total duration of 298 minutes with each between 7 and 20 minutes long.

Then we extract individual transfers by examining HTTP headers and by correlating packet

traces with user input events. We found that all transfers were triggered by users i.e., a user

input is observed within 0.5s (to tolerate the processing delay) before a transfer starts.

Figure 6.6 plots the CDF of ITTs for the three websites. Each curve consists of ITTs

of all eight users. We call an ITT whose value is greater than TT, which is 6 sec, a long

ITT. Otherwise it is a short ITT. Ideally a TTT message should only be sent for a long ITT.

Figure 6.6 clearly indicates the wide disparity of traffic patterns among websites due to

their different contents. For cnn and amazon, 92% and 91% of ITTs are long. In contrast,

facebook has much less long ITTs (only 38%). The second row of Table 6.2 shows the

average ratio of long ITTs for each user. The small standard deviations indicate that the

long-ITT ratio is relatively stable among the eight users.

Figure 6.6 suggests that a browser can adopt a simple approach where for websites

with historically observed high long-ITT ratios, the browser always predicts an ITT to be

long by setting ITT to a large value (we use 60 sec, assuming browsers cannot predict the

exact values of ITT and do only binary predictions). The simulation results are shown in

Table 6.2. For cnn and amazon, TOP saves about half of the total DCH time and 60% of
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Table 6.3: Impact of TOP on Mixed Traces (Pandora and CNN)
Pandora+CNN ∆DT ∆D ∆S ∆E

Default 0 0 0 0
TOP -88±3% -41±2% +17±3% -48±2%
FD -100±0% -50±2% +66±9% -58±2%

the radio energy with less than 10% of increase on the state promotion overhead. However,

for facebook, the savings are much less and the promotion overhead becomes high due

to its small long-ITT ratio. The browser can thus use a fixed long-ITT ratio threshold for

deciding whether or not to apply TOP for each website.

6.6.2.3 Evaluation of mixed traces

To evaluate the coordination algorithm, for cnn and amazon, we concatenate traces

of 2 to 4 randomly selected users, then mix the concatenated trace (roughly 30 min) with

the 30-min Pandora trace. We assume that three application components concurrently use

TOP: Pandora audio (exact prediction of ITT), Pandora advertisement (exact prediction),

and the browser application (always predict ITT to be long). For each website, we generate

100 mixed traces and feed each of them into the simulator for the three schemes listed in

Table 6.3: “Default” (the comparison baseline where TOP or fast dormancy is not used),

“TOP” (using TOP), and “FD” (only using fast dormancy). Table 6.3 (Pandora + cnn)

clearly shows the benefits of TOP, which significantly decreases ∆S from 66% to 17%

by reasonably sacrificing savings of other three dimensions. The results for Pandora +

amazon are very similar.

6.7 Summary

By leveraging fast dormancy, TOP enables applications to actively inform the network

of a tail that can be eliminated via a simple interface. Our design of TOP enables signif-

icantly better radio resource usage and substantial energy savings for cellular networks.
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More importantly, our work opens new research opportunities for designing effective tail

prediction algorithms for smartphone applications (especially for applications involving

user interactions), which is the major part of our ongoing work. In addition, we are seeking

ways to build a real implementation of TOP on Android phones.
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CHAPTER VII

Web Caching on Smartphones: Ideal vs. Reality

We have studied several complementary approaches for reducing the resource con-

sumption in cellular networks: tuning the RRC state machine parameters (Chapter IV),

changing application traffic patterns (Chapter V), and releasing radio resources in an adap-

tive manner (Chapter VI). Another approach not explored by us is simply to reduce the

bandwidth consumption by making applications transfer less data.

In fact, mobile data traffic is experiencing unprecedented growth. Cisco predicted that

from 2011 to 2016, global mobile data traffic will increase by 1800%, reaching 10.8 ex-

abytes per month. This prediction also projects the growth of smartphone traffic to be

5000% greater in 2016 than it is now [54], far exceeding the deployment of cellular in-

frastructures: in 2011, the cellular infrastructure spending was expected to be only a 6.7%

rise over 2010 [2]. From customers’ perspective, as most carriers have moved to a volume-

based charging model, reducing the bandwidth consumption effectively cuts cellular bills.

To achieve the goal of bandwidth reduction, network Redundancy Elimination (RE)

plays a crucial role by preventing duplicate data transfers and making the transferred data

more compact [55]. There exist a wide range of RE techniques such as caching and com-

pression. In this chapter, we investigate a particular RE technique of web caching on smart-

phones, due to (i) the dominance of HTTP in today’s smartphone traffic, (ii) the popularity

and the potential benefits of caching, and (iii) the complexity of the caching protocol.
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7.1 Introduction

Anand:PowerManage:2005 Caching plays a vital role in HTTP that dominates the In-

ternet traffic usage [56]. Web caching can effectively decrease network traffic volume,

lessen server workload, and reduce the latency perceived by end users.

Web caching in cellular networks is even more critical. HTTP traffic generated by

mobile browsers and smartphone applications far exceeds any other type of traffic. HTTP

accounts for 82% of the overall downstream traffic based on a recent study of a large cel-

lular ISP [1]. From network carriers’ perspective, cellular networks operate under severe

resource constraints [5] due to the explosive growth of cellular data traffic [54]. Therefore

even a small reduction of the total traffic volume by 1% leads to savings of tens of millions

of dollars for carriers which are expected to spend $40.3 billion on cellular infrastructures

in 2011 [2] (for all U.S. carriers).

The benefits of caching are also significant from customers’ perspective. (i) Fewer

network data transfers cut cellular bills since most carriers impose a monthly limit on data

plan usage. (ii) The user experience improvement brought by caching is more notable in

cellular networks whose latency is usually higher than those in Wi-Fi and wired networks.

(iii) Transferring less data also improves handset battery life, as the power consumed by the

cellular radio interface contributes 1/3 to 1/2 of the total device power during the normal

workload [6].

The location of a cache can be at one or more places on a path from a handset (i.e.,

a mobile device) to a web server. Although most of prior works focus on caching prox-

ies placed in the network (e.g., hierarchical caching proxies [57], caching proxy place-

ment [56], and caching within 3G networks [1]), we emphasize that in cellular networks,

caching on handsets is particularly important because it does not incur any network-related

overhead. In particular, it eliminates data transmitted over the last-mile, i.e., the radio ac-

cess network, which is known as the performance and resource bottleneck of a cellular

network [5]. In contrast, a network cache does not bring the aforementioned benefits but
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can cut the wide-area latency and enable sharing across users. In this study we focus on

handset caches, which can coexist with network caches.

The rules of web caching are defined in HTTP 1.1 protocol (RFC 2616 [49]), although

there exist numerous caching proposals [58, 59, 60, 61] that were never widely deployed.

As specified in RFC 2616, HTTP employs expiration and revalidation to ensure cache

consistency: the server sets for each cacheable file an expiration time before which the

client should safely assume the freshness of the cached file. After the cache entry expires,

the client must send a small revalidation message to the server to query the freshness of the

cache entry. We detail the procedure in §7.2.

Redundant network transfers due to cache implementation. Let an ideal handset

cache be a cache that has unlimited size and strictly follows the aforementioned caching

rules. Any practically implemented handset cache is not ideal due to one or more reasons

below: (i) it has limited size, (ii) the implemented caching logic does not satisfy RFC

2616, and (iii) the cache is not persistent (i.e., it does not survive a process restart or a

device reboot). A non-ideal cache potentially incurs redundant transfers that do not occur

if an ideal cache were used. Also, redundant transfers can be caused by developers not

utilizing the caching support even if it is provided by the HTTP library.

In this chapter, we present to our knowledge the first network-wide study of the redun-

dant transfers (defined above) by investigating the following important characteristics:

• The prevalence of redundant transfers within today’s smartphone traffic, in terms of

both the traffic volume contribution and the resource impact;

• The root cause for the redundant transfers;

• The handset caching logic, identified to be the main reason of redundant transfers, of

HTTP libraries and browsers on popular smartphone systems.

We summarize our main findings as follows.
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• We leveraged a large dataset containing 695M HTTP transaction records collected

from 2.9M customers of a commercial cellular network in the U.S. To complement

this data set which has a short duration of 24 hours, we collected another five-month

trace from 20 smartphone users using smartphones instrumented by us. We measured

the prevalence of redundant transfers for both datasets using an accurate caching sim-

ulation algorithm, assuming an ideal cache. To our surprise, redundant transfers due

to caching implementation issues contribute 18% and 20% of the total HTTP traffic

volume, for both datasets, respectively. The fraction slightly decreases to 17% at the

scope of all traffic for the user study trace. Almost all redundant transfers are caused

by the handsets instead of the server. Further, the redundancy ratio varies among

applications. Some popular smartphone apps have unacceptably high fractions (93%

to 100%) of redundant transfers.

• By strategically changing the simulation algorithm and analyzing the cache access

patterns, we found the impact of limited cache size and non-persistent cache on the

redundancy to be limited. For example, the fraction of redundant bytes is at least

13% (compared to 18% for an ideal cache) within all HTTP traffic even when our

simulation uses a small cache of 4 MB. This implies the problematic caching logic

is the main reason for redundant transfers.

• We investigated the resource overhead (handset radio energy, radio resources, and

signaling load) incurred by redundant transfers. The results indicate that the impact

on resource consumption is smaller than their impact on the traffic volume (yet still

significant, i.e., 7% for radio energy, 9% for radio resources, and 6% for signaling

load, based on our analysis of the user study trace), due to reasons explained in §7.5.

• We performed comprehensive tests of ten state-of-the-art HTTP libraries and mobile

browsers, many of which were found to not fully support or strictly follow the HTTP

1.1 caching specifications. In particular, among the eight HTTP libraries, four (three
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for Android and one for iOS) do not support caching at all. Smartphone apps using

these libraries thus cannot benefit from caching. By exposing the shortcomings of

existing implementations, our work helps encourage library and platform developers

to improve the state of the art, and helps application developers choose the right

libraries to use for better performance.

Overall, our findings suggest that for web caching, there exists a huge gap between the

protocol specification and the protocol implementation on today’s mobile devices, leading

to significant amount of redundant network traffic, most of which could be eliminated if

the caching logic of HTTP libraries and browsers fully supports and strictly follows the

specification, and developers fully utilize the caching feature provided by the libraries.

Fixing this cache implementation issue can bring considerable reduction of network traffic

volume, cellular resource consumption, handset energy consumption, and user-perceived

latency, benefiting both cellular carriers and customers.

In the rest of this chapter, §7.2 provides background of HTTP caching. §7.3 describes

the measurement goal, data, and methodology. Then we measure the traffic volume impact

and the resource impact of redundant transfers in §7.4 and §7.5, respectively. In §7.6 we

perform caching tests for popular HTTP libraries and mobile browsers. We discuss the

future work and conclude the chapter in §7.7.

7.2 Background: Caching in HTTP

This section provides background of web caching defined in HTTP 1.1 [49]. As de-

scribed in §7.1, our study focuses on caching on handsets instead of within the network. In

the remainder of the chapter, a cache refers to an HTTP cache on a handset unless other-

wise specified. We refer to a web object (e.g., an HTML document or an image) carried by

an HTTP response as a file.

Caching consistency (i.e., keeping cached copies fresh) is the key issue. To realize
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that, the server sets the expiration time for each file by specifying either Expires or

Cache-Control:max-age header directive. Then before a cache entry expires, a handset

should safely assume the freshness of the file by serving the request using the cached copy

without generating any network traffic. After a cache entry expires, a handset should per-

form cache revalidation, i.e., asking the origin server whether the file has changed, by issu-

ing conditional requests using If-Modified-Since:<time> or If-None-Match:<eTag>

directive (or both). The former directive instructs the server to send a new copy if the file

has changed since a specified date, which is usually the last modified time indicated by

the Last-Modified directive in the previous response. The latter allows the server to

determine the freshness using a file “version identifier” called eTag (entity tag), which is

a quoted string attached to the file in the previous response. An eTag might be imple-

mented using a version name or a checksum of the file content. In either case, if the file

has changed, the server sends a new copy to the handset. Otherwise, a small 304 Not

Modified response is returned to the handset, without a document body, for efficiency.

A handset determines a cache entry has expired if and only if tarrive age + tcache age ≥

tfresh life. tarrive age is the age of the file when it arrives at the cache. It is computed from the

Date or Age directive of a response, plus an estimated round-trip time compensating for

the network delay. tcache age, which can be trivially calculated, indicates how long the file has

been in the cache. tfresh life is the cached copy’s freshness lifetime (similar to the shelf life of

food in grocery stores) derived from the Expires or Cache-Control:max-age directive

where the latter one overrides the former one if both exist. tfresh life is usually specified by

the server while a handset can also specify Cache-Control request directives (max-age,

max-stale, and min-fresh) to tighten or loosen expiration constraints although they are

rarely used in practice.

Non-storable and must-revalidate files. A non-storable file (marked by Cache-Control:

no-store) forbids a cache from storing (i.e., caching) the file. A must-revalidate file

(marked by Cache-Control:must-revalidate, Cache-Control:no-cache, or
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Pragma:no-cache) can be stored in a cache. However, the cache must bypass the fresh-

ness calculation mechanism and always revalidate with the origin server before serving it

(“no-cache” is misleading because the file actually can be cached). A handset can also

explicitly set the above caching directives in a request, indicating it will not store or will

always revalidate the file.

Clearly, well-behaved caching logic requires correct implementation at both the hand-

set and the server side. Our analysis described in §7.3 helps identify inefficient caching

behaviors and which side is responsible for any of them.

7.3 Measurement Goal, Data, and Methodology

This section highlights our measurement goal (§7.3.1), describes the measurement data

(§7.3.2), and then details our analysis approach for redundant data transfers (§7.3.3).

7.3.1 The Measurement Goal

We define inefficient caching as caching behaviors that (i) lead to redundant data trans-

fers, whose negative impact on performance, resource consumption, and billing is par-

ticularly high for mobile users, and (ii) relate to the implementation (as opposed to the

semantics, as described below) of the HTTP caching mechanism. Inefficient caching can

be caused by multiple reasons including the following factors covering the most important

aspects of cache implementation (we discuss less significant factors in §7.3.3.2).

• Problematic caching logic due to any of the following reasons. (i) The handset does

not fully support or strictly follow the protocol specification1. (ii) The server does

not properly follow the caching specification. (iii) In order to leverage the caching

support provided by an HTTP library, a developer still needs to configure it. Many

1Not following the specification can also cause consumption of expired contents. But this was never
observed in our tests in §7.6.
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developers may skip that for simplicity, or simply be unaware of it, therefore missing

the opportunity of caching even if it is supported.

• A limited cache size causing the same content to be fetched twice if the first cached

copy is evicted from the cache.

• A non-persistent cache whose cached data does not survive a process restart or a

device reboot (unlike a persistent cache that survives both).

As highlighted in §7.1, we aim at understanding the impact of redundant transfers

caused by the above inefficient caching factors, for commercial cellular networks (§7.4

and §7.5), as well as how the caching logic of popular HTTP libraries and mobile browsers

deviates from the specification (§7.6).

Caching implementation vs. semantics. All the factors listed above relate to caching

implementation. Redundant transfers may also be attributed to the misconfiguration of

caching parameters, which ideally should be properly set by a server according to the se-

mantics of files. For example, for a news website, conservatively marking all news articles

and images as non-storable or setting for them very short freshness lifetime values may

lead to redundant transfers while bringing negligible benefits given that the article contents

rarely change. A thorough study of the file semantics and caching parameter settings is

our on-going work, although we show in this chapter examples where caching parameter

settings are obviously too conservative (§7.7).

From this point on, unless otherwise specified, redundant transfers refer to redundant

transfers caused by caching implementation.

7.3.2 The Smartphone Measurement Data

We collected two diverse datasets summarized in Table 7.1 to measure redundant trans-

fers caused by inefficient caching.
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Table 7.1: Our measurement datasets.
Dataset ISP UMICH

Data collection period
May 20 2011 0:00 GMT ∼ May 12 2011 ∼
May 20 2011 23:59 GMT Oct 12 2011

Collection point Commercial cellular core network Directly on users’ handsets
Number of users 2.92 million (estimated) 20

Dataset size 271 GB 119 GB
Traffic volume 24.3 TB 118 GB

Platforms Multiple (mainly iOS and Android) Android 2.2

Data format
695 million records of Full packet trace (including

HTTP transactions payload) of all traffic

7.3.2.1 The ISP Dataset

The ISP dataset was collected from a large U.S. based cellular carrier (Carrier 1, see §2.1.3)

at a national data center on May 20, 2011, on the interface between the GGSN (Gateway

GPRS Support Node) and SGSNs (Serving GPRS Support Node) without any sampling.

Each record in the dataset corresponds to one HTTP transaction, containing three pieces of

information: (i) a 64-bit timestamp, (ii) summaries of header fields in the request and the

response, and (iii) the actual amount of data transferred based on the TCP data associated

to each HTTP transaction. To preserve subscribers’ privacy, the URLs were anonymized

using a 128-bit hash function and also all cookie information was removed from the HTTP

headers2.

Subscriber identification. Since our cache simulation is performed at a per-user basis

(§7.3.3), we need to identify the subscriber ID for each record. Instead of using MSISDN

(the phone number) or IMEI (the device ID) information that was not collected due to

privacy concern, we used anonymized session-level information to correlate multiple HTTP

transaction records with a single subscriber. One disadvantage of our approach is that one

real subscriber may be identified with multiple subscriber IDs (but one subscriber ID never

maps to multiple real subscribers). This leads to an underestimation of the amount of

redundant data due to increased cold start cache misses [63] (explained in §7.3.3.2).
2In HTTP, caching and cookies are decoupled, and a server is responsible for explicitly disabling caching

when appropriate [62].

127



7.3.2.2 The UMICH Dataset

The ISP dataset is representative due to its large user base, however it is limited in terms

of the trace duration and recorded content, as only summarized HTTP transaction records

were captured. This is complemented by our second dataset called UMICH, collected from

20 smartphone users for five months, allowing us to keep detailed track of each individual

user’s web cache for a much longer period. These participants consisted of students from

8 departments at University of Michigan3. The 20 participants were given Motorola Atrix

(11 of them) or Samsung Galaxy S smartphones (9 of them) with unlimited voice, text

and data plans of the same cellular carrier from which we obtained the ISP dataset. All

smartphones use Android 2.2. The participants were encouraged to take advantage of all

the features and services of the phones. We kept collected data and users’ identities strictly

confidential.

We developed custom data collection software and deployed it on the 20 smartphones.

It continuously runs in the background and collects two types of data: (i) full packet traces

in tcpdump format including both headers and payload, and (ii) the process name respon-

sible for sending or receiving each packet, using the method described in [6] by efficiently

correlating the socket, the inode, and the process ID in Android OS in realtime. Both cel-

lular and Wi-Fi traces were collected without any sampling performed. The data collector

incurs no more than 15% of CPU overhead although the overhead is much lower when the

throughput is low (e.g., less than 200 kbps).

We also built a data uploader that uploads the captured data (stored on the SD card) to

our server when the phone is idle. The data collection is paused when the data is being

uploaded so the uploading traffic is not recorded. Also the upload is suspended (and the

data collection is resumed) by any detected network activity of user applications. The entire

data collection and uploading process is transparent to the users, although we do advise the

users to keep their phones powered on as often as possible.

3This user study has been approved by the University of Michigan IRB-HSBS #HUM00044666.
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7.3.3 Analyzing Redundant Transfers

We explain our data analysis approach. We feed each user’s HTTP transactions in

the order of their arrival time to a web cache simulator developed by us. The simulator

behaves like a cache that strictly follows the HTTP 1.1 caching mechanism specified in

RFC 2616 (§7.2). Redundant transfers can be identified through the simulation process.

Our approach differs from previous trace-driven cache simulations [58, 63, 56, 1] in two

ways. (i) Our simulation is performed at a per-user basis to capture redundant transfers

for each handset, while previous ones consider aggregated HTTP transfers of all users

to compute, for example, the cache hit ratio, for a network cache. (ii) Ours is more fine-

grained in that it distinguishes various causes of the redundancy (and also non-redundancy).

In the remainder of the chapter, a handset cache and the simulated cache refer to the

cache on a real handset and the cache maintained by our simulator, respectively.

The basic simulation algorithm is illustrated in Figure 7.1. It assigns to each HTTP

transaction a label indicating its caching status. A file can be NOT STORABLE due to

its Cache-Control:no-store directive or causes CACHE ENTRY NOT EXIST because

it has not yet been cached. NOT EXPIRED DUP is an undesired case where a handset issues

a request for a file cached in the simulator before it expires, resulting in redundant transfers

(“DUP” means duplication).

Then Line 10 to 17 deal with the scenario where a cached file has expired. If the file

has changed, then the entire file needs to be transferred again (FILE CHANGED). If the file

remains unchanged, the ideal way to handle it is that the handset performs cache reval-

idation and the server sends back an HTTP 304 response. Otherwise, the problem either

comes from the handset side, which does not issue a conditional request (EXPIRED DUP), or

from the server side, which does not recognize a conditional request (EXPIRED DUP SVR).

Among the aforementioned labels, NOT EXPIRED DUP, EXPIRED DUP and EXPIRED DUP SVR

correspond to redundant transfers.

Is our simulated cache complete? Let us first assume our simulated cache is persistent
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foreach HTTP transaction r
if (file is not storable) then

//the file contains "Cache-Control: no-store"
assign_label(r, NOT_STORABLE);
continue;

else if (cache entry not exists) then
//cache entry not found
assign_label(r, CACHE_ENTRY_NOT_EXIST);

else if (cache entry not expired) then
//a request is issued before the file expires
assign_label(r, NOT_EXPIRED_DUP);
//the response is ignored by the simulator because the
//request should not have been generated
continue;

else if (file changed) then
//the file has changed after the cache entry expires
assign_label(r, FILE_CHANGED);

else if (HTTP 304 used) then
//the file has not changed after the cache entry expires,
//and a cache revalidation is properly performed 
assign_label(r, HTTP_304);

else if (revalidation not performed) then
//the file has not changed after the cache entry expires, 
//but the handset does not perform cache revalidation
assign_label(r, EXPIRED_DUP);

else
//the file has not changed after the cache entry expires, 
//but the server does not recognize the cache revalidation
assign_label(r, EXPIRED_DUP_SVR);

update_cache_entry(r);//update the simulated cache
endfor

01
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Figure 7.1: The basic caching simulation algorithm.

U: HTTP transactions
carried out by applications

D: HTTP transfers
seen in the data

Redundant 
transfers due to 

limited cache size
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Figure 7.2: A Venn diagram showing HTTP transactions observed by applications and by
our simulator, as well as the redundant transfers.
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with unlimited size (i.e., an ideal cache defined in §7.1). Consider the Venn diagram shown

in Figure 7.2. Let U be all HTTP transactions carried out by applications. What we observe

in the data, D, is a subset of U since requests of U\D (the relative complement of D in U )

are already served by the handset cache so U\D does not appear on the network. However,

remember that in order for a file f to be cached, it must be transferred over the network

(i.e., f ∈ D) at least once. Therefore our simulated cache will not miss any file that is in

a handset cache, if the simulated cache is ideal (we discuss the only exception in §7.3.3.2).

More importantly, as explained in §7.3.1, our goal is to study the redundant data transfers

that always belong to D instead of U\D.

On the other hand, a file in our simulated cache may be missing in a handset cache

because of its problematic caching logic (the set H in Figure 7.2), the limited size (the set

S), or a lack of persistent storage (the set M ) of the handset cache. Ideally we want to

distinguish the three cases. However, the redundant transfers identified by our simulator

are in fact H ∪ S ∪M where H , S, and M are indistinguishable, given that the simulated

cache is ideal.

7.3.3.1 Algorithm Details

Figure 7.1 sketches the basic simulation algorithm. We provide details of the algorithm

below.

The key of a cache entry (our simulated cache was implemented using a hash map)

consists of three parts: (i) the host name indicated by the Host request directive, (ii) the

file name followed by the GET command, and (iii) the eTag. Part (i) and (ii) must exist

otherwise the HTTP transaction is assigned a special label “OTHER” (Table 7.3) while the

eTag part is optional. Also the file name includes the entire GET string containing query

strings so /a.php?para=1 and /a.php?para=2 have different cache entries. Empty or

error responses (e.g., 404 Not Found) are also counted as OTHER, which only accounts

for 0.5% of all HTTP traffic in both datasets.
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Requested range before expiration

Transferred range
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DUP_NOTCACHED
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Figure 7.3: A partially cached file and a partial cache hit.

The change of a file is identified through a different Last-Modified, Content-Length

or Content-MD5 value for the same cache entry.

A heuristic freshness lifetime can be used when neither Cache-Control:max-age

nor Expires exists in a response, according to RFC 2616. We use a heuristic lifetime of

24 hours and later we show our analysis results are not sensitive to this value (§7.4.1).

A partially cached file is caused either by a byte-range request (using the Range direc-

tive) for a subrange of the origin file, or by a prematurely broken connection. Our simulator

supports partial caching by allowing a cache entry to contain one or more subranges of a

file. We implemented the following logic according to RFC 2616. Assume one or more

subranges of a file have been cached, and an incoming response transfers another subrange

R. The new subrange R is then combined with the existing range(s) if both the existing

and the new range have the same eTag value (the eTag value must exist). Otherwise, all

previously cached range(s) are removed before R is put into the cache entry.

If a file is partially cached, then a single transfer of the whole or a part of the file

may contain both redundant and non-redundant bytes. To handle such a case, for each

of the *EXPIRED DUP* labels, we use two new labels, *EXPIRED DUP* CACHED, and

*EXPIRED DUP* UNCACHED (not shown in Figure 7.1), to distinguish the redundant and

the non-redundant ranges, respectively. Consider a file of 6 MB shown in Figure 7.3. As-

sume two ranges [0, 2M) and [3M, 6M) are already cached by the simulator. The handset
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makes a byte-range request of [1M, 5M) before the cache entry expires. However the user

cancels the transfer in the middle so only [1M, 4M) is actually transferred, as observed in

our dataset. In this example, ideally the HTTP library should only request for [2M, 3M),

which is not in the cache, using the Range and the If-Range directives4. We therefore la-

bel [2M, 3M) as NOT EXPIRED DUP NOTCACHED, the non-redundant range, and label [1M,

2M) and [3M, 4M) as NOT EXPIRED DUP CACHED, the redundant ranges. The two labels

substitute for the original NOT EXPIRED DUP label which is not used for partially cached

files. We introduce similar labels for EXPIRED DUP SVR and EXPIRED DUP. Table 7.3

summarizes all labels.

7.3.3.2 Limitations

We discuss five limitations of our simulation approach.

• Inefficient caching and hence redundant transfers exist in both unencrypted HTTP

and encrypted HTTPS traffic. However, the ISP trace contains only HTTP records.

For the UMICH trace, the simulator cannot parse the HTTPS traffic that was collected

by tcpdump running below the SSL library. HTTPS accounts for only 11.2% of the

total traffic volume, compared to 85.4% for HTTP transfers.

• As mentioned before, the simulator cannot precisely distinguish S, H , and M shown

in Figure 7.2. We qualitatively address such indistinguishability in §7.4.2 based on

robust heuristics.

• A file may already be cached in a handset cache before the data collection started

but the simulator does not know that. As an inherent problem (called cold start cache

miss [63]) of any trace-driven cache simulation algorithm, it leads to an underestima-

tion of the cache hit ratio (or the redundancy ratio in our case). But both our traces (in

4The Range directive is often used together with an If-Range:<eTag> conditional
request. It means “if the file is unchanged, send me the range that I am missing; otherwise,
send me the entire new file”.
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Table 7.2: Statistics of file cacheability.

Count by Dataset
Normally Must- Non-

Other
Cacheable revalidate storable

Bytes
ISP 69.8% 14.3% 15.4% 0.5%

UMICH 78.2% 1.6% 19.7% 0.5%

Files
ISP 72.4% 12.4% 14.9% 0.4%

UMICH 65.6% 6.8% 25.4% 2.1%

particular the UMICH dataset) are sufficiently long so the impact of cold start cache

miss is expected to be small.

• Redundant transfers can also be caused by users explicitly reloading a file (e.g., re-

freshing a web page). In that case, the application may override the default caching

behavior by, for example, requesting for a file before its cached copy expires, but the

simulator has no way to identify such manually triggered redundant transfers.

• Similarly, our simulator cannot identify redundant transfers caused by users manually

clearing the cache after browsing sessions. The amount of such redundant data is

expected to be small due to the observed strong temporal locality of accessing the

same cache entry (described in §7.4.2).

7.4 The Traffic Volume Impact

In this section, we investigate the traffic volume impact of redundant transfers caused

by inefficient caching behaviors.

7.4.1 Basic Characterization

We first assume our simulated cache is ideal (i.e., it is persistent with unlimited cache

size). Thus all redundant transfers caused by the three factors described in §7.3.1 can be

identified.

File cacheability. Table 7.2 breaks down all HTTP bytes (files) transferred over the net-
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Table 7.3: Detailed breakdown of caching entry status.
Cache Fully or Red % HTTP bytes

Label hit or partially und ISP UMICH
miss? cached? ant? (GC)∗ (GC) (PC)∗

1. NOT STORABLE - - - 15.4% 19.7% 19.7%
2. CACHE ENTRY NOT EXIST Miss - - 47.5% 42.0% 42.3%
3. FILE CHANGED Miss - - 1.9% 0.5% 0.5%
4. HTTP 304 Hit Either - 0.1% 0.0% 0.0%
5. NOT EXPIRED DUP Hit Full Yes 13.6% 15.0% 14.7%
6. NOT EXPIRED DUP CACHED Hit }Partial

Yes 2.3% 1.3% 1.3%
7. NOT EXPIRED DUP NOTCACHED Miss - 16.0% 17.0% 17.0%
8. EXPIRED DUP Hit Full Yes 1.7% 4.0% 4.0%
9. EXPIRED DUP CACHED Hit }Partial

Yes 0.1% 0.0% 0.0%
10. EXPIRED DUP NOTCACHED Miss - 0.9% 0.0% 0.0%
11. EXPIRED DUP SVR Hit Full - 0.0% 0.0% 0.0%
12. EXPIRED DUP SVR CACHED Hit }Partial

- 0.0% 0.0% 0.0%
13. EXPIRED DUP SVR NOTCACHED Miss - 0.0% 0.0% 0.0%
14. OTHER - - - 0.5% 0.5% 0.5%
∗ GC: all processes on a handset share a global cache; PC: each process has its own cache.

work into four categories: normally cacheable (i.e., following the standard expiration and

freshness calculation mechanism), must-revalidate (§7.2), non-storable, and other HTTP

transfers (§7.3.3.1). For both datasets, most bytes (70% to 78%) and most files (66% to

72%) are normally cacheable, indicating the potential benefits of caching if handled prop-

erly by a handset.

A detailed breakdown of caching entry status is shown in Table 7.3, which lists the

14 labels described in §7.3.3. We show two simulation scenarios for the UMICH dataset:

(i) all processes on a handset share one single global cache, and (ii) each process has its

own cache. They correspond to “GC” and “PC” in Table 7.3, respectively. The per-process

cache simulation is feasible because the UMICH trace contains packet-process correspon-

dence for each packet. We summarize our findings as follows.

• NOT EXPIRED DUP contributes most bytes (77% for ISP and 74% for UMICH) among

the four labels (5, 6, 8, 9) incurring redundant transfers. In other words, redundant

transfers are usually caused by a handset issuing unnecessary requests before re-
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ceived files expire. For the ISP (UMICH) trace, 14% (31%) of all HTTP transactions

(not shown), corresponding to 14% (15%) of all HTTP bytes (Row 5 in Table 7.3),

are unnecessary because if handsets properly cache previous responses, no request

needs to be sent out over the network and the responses can be served from local

caches. On the other hand, the contribution of EXPIRED DUP is much less. For the

ISP (UMICH) trace, for 4.5% (10.2%) of all HTTP transactions (not shown), condi-

tional requests to check the freshness of the cached data need to be sent, so that their

responses, corresponding to 1.7% (4.0%) of all HTTP bytes (Row 8 in Table 7.3)

will end up being served from local caches (if handsets properly cache previous re-

sponses) because they do not change.

• When HTTP 304 is not used, it is almost always attributed to the handset instead of

the server which properly handles cache revalidation, as indicated by the negligible

contribution of EXPIRED DUP SVR*.

• Partially cached files incur limited redundant transfers in that the traffic volume con-

tribution of * DUP CACHED is small. In contrast, * DUP NOTCACHED (illustrated in

Figure 7.3) account for considerable amount of non-redundant bytes. We found

most (95%)5 of * DUP NOTCACHED bytes originate from servers using byte-range

responses for streaming large multimedia files. Note that a recent measurement

study [64] showed that 98% of multimedia streaming traffic for a commercial cel-

lular network is delivered over HTTP.

• The results of UMICH (GC) and UMICH (PC) are almost identical, indicating small

overlap among files requested by different applications.

• Cellular and Wi-Fi traffic exhibit similar breakdown (not shown in Table 7.3), indi-

cating the caching strategies on both the server and the handset side are independent

of the network interface.

5Identified by their User-Agent strings. See §7.4.3 for details.
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Table 7.4: The overall traffic volume impact of redundant transfers when different heuristic
freshness lifetime values are used.

Dataset

% of redundant bytes of all HTTP traffic
[% of redundant bytes of all traffic (HTTP and non-HTTP)]

under different values of heuristic freshness lifetime
1 hour 6 hours 1 day∗ 1 week 1 month

ISP (GC)
17.74% 17.74% 17.74% 17.74% 17.74%
[16%]∗∗ [16%] [16%] [16%] [16%]

UMICH (GC)
20.24% 20.25% 20.28% 20.32% 20.34%

[17.29%] [17.30%] [17.33%] [17.36%] [17.38%]

UMICH (PC)
19.94% 19.95% 19.98% 20.02% 20.04%

[17.03%] [17.04%] [17.07%] [17.10%] [17.12%]
∗ 1 day is the heuristic freshness lifetime used for other results in this chapter.
∗∗ Assume the fraction of HTTP traffic is 90%, based on a recent large-scale
measurement study for a commercial cellular data network [65].

The overall traffic volume impact is summarized in Table 7.4. We highlight key

observations below.

• The first number in each grid of Table 7.4 is the fraction of redundant bytes within

all HTTP traffic. Recall the redundant bytes come from label 5, 6, 8, 9 in Table 7.3,

and they correspond to H ∪S∪M in Figure 7.2. By eliminating redundant transfers,

the reduction of HTTP traffic is as high as 17.7% and 20.3% for ISP and UMICH,

respectively.

• Even at the scope of all traffic (HTTP and non-HTTP), the redundancy ratio is also

significant (17.3% for UMICH) as indicated by the second number. Note that this

is an underestimation because we did not consider the redundancy of HTTPS traffic

accounting for 11.2% of the total traffic volume of UMICH.

We do not have the number for the ISP dataset that only contains HTTP records. As

reported by a recent measurement study [65], HTTP accounts for at least 90%6 of

the total traffic volume of an aggregated one-week dataset involving 600K cellular

6See Figure 1(a) of the paper [65]. The following categories use HTTP: web browsing,
smartphone apps, market, and streaming.
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subscribers collected in August 2010. If we assume that fraction is representative

and apply it to our ISP dataset, then its overall redundancy ratio at the scope of all

traffic is at least 16%.

• Recall that our simulator introduced a heuristic freshness lifetime when a response

contains no expiration information. Table 7.4 shows this parameter has negligible

impact on the amount of redundant data.

• Although the duration of the ISP trace is much shorter, its redundancy ratio is only

marginally smaller than that of UMICH, implying the usage duration has limited

impact on the redundancy ratio. This is partly explained by the strong temporal

locality of accessing the same cache entry (Figure 7.5 in §7.4.2).

• For the UMICH dataset, the difference between redundancy ratios of per-process

caches (PC) and a single global cache (GC) is as small as 0.3%.

7.4.2 The Impact of the Cache Size

Now we discard the assumption of unlimited cache size and consider a finite cache for

the simulator. This helps quantify the impact of limited cache size on redundant transfers.

We implemented LRU (Least Recently Used) algorithm for our simulator since all HTTP

libraries and browsers we tested in §7.6 use LRU as the replacement algorithm, if they

support caching. LRU discards the least recently accessed files first when the cache is full.

With a finite cache size, the simulated cache may not capture all redundant transfers in the

trace. We refer to those captured ones as detected redundant transfers.

Consider Figure 7.2 again. Let us decrease the simulated cache size. Then we see

fewer detected redundant transfers (each of |S|, |H|, and |M | decreases) since more previ-

ously detected redundant transfers are classified as CACHE ENTRY NOT EXIST due to cache

misses as the simulated cache becomes smaller. In particular, when the simulated cache size

is smaller than the handset cache size, redundant transfers due to limited size of the hand-
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Figure 7.4: Relationship between the simulated cache size and the fraction of detected
HTTP redundant bytes.

set cache will be eliminated (i.e., |S| becomes 0) because if a cache entry is evicted from

the handset cache, it must have been evicted from the simulated cache (assuming both use

LRU). Therefore, if the detected redundant bytes decrease to x% when the simulated cache

size goes below the handset cache size, then the traffic volume impact of H ∪M is at least

x%. Note this is a very loose lower bound in that |H ∪M | also decreases as the simulated

cache becomes smaller.

Our measurement results are shown in Figure 7.4 where we vary the simulated cache

size from 1 MB to 2 GB for both datasets (note that the X-axis is in log scale). Figure 7.4

shows that even when the cache has a very small size of, for example, 4 MB7, the detected

redundant bytes is still as high as 12.8% and 13.2% (compared to 17.7% and 20.3% when

the simulated cache has unlimited size), which are the aforementioned (loose) lower bounds

of |H ∪M |, for ISP and UMICH, respectively. We therefore conclude that the problematic

caching logic (instead of the limited cache size) takes the major responsibility for redundant

transfers.

Figure 7.4 also suggests how to set the cache size, which can be small enough to entirely

fit into today’s smartphone memory with very limited additional cache misses incurred. For

example, reducing the simulated cache size from infinity to 50 MB causes additional cache

misses for only 2.0% and 0.4% of HTTP bytes (they are the loose upper bounds of the

7In comparison, our caching tests in Table 7.10 (§7.6.2) show that the cache sizes for the Android 2.2
browser and the Safari browser of iOS 4.3.4 / iPhone 4 are 8 MB and 100 MB, respectively.
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Figure 7.5: Distribution of intervals between consecutive accesses of the same simulated
cache entry (for the ISP trace).

reduction of |S|) for UMICH and ISP, respectively, as indicated by the decrease of the

detected redundant bytes shown in Figure 7.4.

Persistent vs. non-persistent cache. As described in §7.3.1, a non-persistent cache

does not survive a process restart or a device reboot while a persistent cache does survive

both. Based on our caching tests of 6 HTTP libraries and mobile browsers that support

caching (§7.6.2), only one library for iOS (NSURLRequest) uses a non-persistent cache

(Table 7.10). All Android libraries as well as both iPhone and Android browsers use per-

sistent caches.

Our simulation assumes a persistent cache, which is consistent with the UMICH trace

involving only Android handsets. For the ISP trace involving iOS devices, redundant trans-

fers can also be caused by the non-persistent cache, which cannot be simulated since we do

not know when a user restarts a process or reboots a handset. However, we expect the frac-

tion of redundant transfers caused by the non-persistent cache is small due to two reasons.

(i) Restarting a process happens infrequently in iOS [66]. On iPhone and iPad, pressing

the “home” button simply puts an application to background. (ii) More quantitatively, Fig-

ure 7.5 plots the CDF of the intervals between consecutive accesses of the same simulated

cache entry for the ISP trace. It is generated during the cache simulation. As shown in

Figure 7.5, 59% of the intervals are less than 1 minute and 87% are less than 1 hour. We
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expect such strong temporal locality of cache entry access makes a non-persistent cache

comparable to a persistent cache in terms of efficiency.

7.4.3 Diversity Among Applications

This subsection investigates the caching efficiency of individual smartphone applica-

tions.

Identifying smartphone applications is trivial for the UMICH trace, which contains

the process name for each packet and hence for each HTTP transaction. 741 unique pro-

cesses were observed from the UMICH dataset.

For the ISP dataset whose application identification is less straightforward, we used the

User-Agent field in HTTP requests to distinguish different applications. First, from the

48,214 unique User-Agent strings appeared in the dataset, we picked the top 500 strings

with the highest HTTP traffic coverage, yielding an overall traffic coverage ratio of 95.5%.

We found many User-Agent strings belong to the same application. They are only slightly

different in OS versions, hardware specifications, and languages, etc. For example, Apple

iTunes has the following User-Agent format: iTunes-Device/iOS version (device ver-

sion; memory size), such as iTunes-iPhone/4.3.3(4;16GB) or iTunes-iPhone/4.2.1

(2;8GB). To avoid duplicated applications, we generated 95 regular expressions, each

corresponding to an app for a specific device and/or OS, that cover all 500 User-Agent

strings. All regular expressions follow a simple pattern of app name*device/OS name*, such

as iTunes*iPhone* and Pandora*iOS*, by ignoring other less significant fields such as

the OS version number.

Redundant transfers for top applications are measured in Table 7.5 (assuming an

ideal cache for simulation). For the UMICH (ISP) trace, we show the top 12 process names

(User-Agent regular expressions), their contributions of HTTP traffic, and their fractions

of redundant bytes (their names have been anonymized). Due to the heavy-tail distribution

of the smartphone application usage [65], these top apps are responsible for more than 83%
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Table 7.5: Measuring redundant transfers for top applications in both datasets.
The UMICH dataset (HTTP Bytes: 101 GB)

Android process∗
% HTTP % redundant

bytes HTTP bytes
Streaming Service 1 29.8% 8.8%
Streaming Service 2 12.4% 0.5%
Web Browser 1 11.5% 20.4%
Entertainment 6.6% 12.0%
News and Weather 6.3% 55.3%
Lifestyle 3.9% 99.4%
Music and Audio 1 3.4% 0.0%
Music and Audio 2 2.9% 0.1%
Web Browser 2 1.8% 8.6%
Social Network Manager 1.7% 99.3%
Media and Video 1.7% 0.8%
Web Browser 3 1.4% 18.3%
(Total or average) 83.4% 18.3%

The ISP dataset (HTTP Bytes: 24.3 TB)
User-Agent regex % HTTP % redundant
(device/OS name)∗ bytes HTTP bytes

Streaming Service 1 (A)∗∗ 37.8% 20.1%
Internet Radio (A) 11.6% 1.9%
Web Browser (A) 11.3% 14.6%
Media player (A) 8.9% 3.1%
Map (A) 3.1% 0.0%
HTTP Library (B) 2.4% 86.6%
Web Browser (C) 2.1% 1.6%
Weather (A) 2.0% 93.0%
Social Networking (A) 1.6% 7.3%
Streaming Service 2 (D) 1.5% 19.1%
Web Browser (B) 1.4% 13.5%
Ad library (B) 1.0% 100.0%
(Total or average) 84.7% 18.2%
∗ The process names, User-Agent regular expressions,
and device/OS names have been anonymized.
∗∗ For the ISP dataset, A, B, C, D refer to four different
device/OS names after anonymization.
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of all HTTP traffic. We found that while some apps incur small fractions of redundant data,

some have unacceptably high redundancy ratios.

To validate the cache simulation results, we further studied the four apps with high

redundancy ratios greater than 90% as shown in Table 7.5. We used them locally by ex-

ploring their common application usage scenarios, whose packet traces were simultane-

ously collected by tcpdump running on our handsets. By analyzing the traces, we found

that all four apps use HTTP as the application-layer protocol but none of them performs

caching. For example, for the “Weather (A)” app, HTTP responses of the weather informa-

tion contain the Expires and the Cache-Control:max-age directives both specifying

a freshness lifetime of 5 minutes. But when we checked the weather for the same location

again (we verified from the trace that the URLs were identical), the handset always issued

a non-conditional request regardless of the freshness of the downloaded file.

Inefficiency caused by HTTP POST. Table 7.5 indicates that the “Map (A)” app incurs

negligible redundant transfers, because almost all its bytes are not cacheable (not shown).

Specifically, we found that instead of employing HTTP GET, the application heavily uses

HTTP POST requests that point to a single static file name by including the parameters in

the body of a POST request, making it impossible for HTTP to cache the responses. A more

caching-friendly approach is to attach query strings to the URLs to make them cacheable.

We summarize important findings regarding to the traffic volume impact of redundant

transfers in Table 7.6.

7.5 The Resource Impact

§7.4 reveals the traffic volume impact of redundant transfers due to inefficient caching.

In cellular networks, resources such as handset battery life, radio resources, and signaling

load could also become critical bottlenecks. We now focus on understanding the impact of

redundant transfers on cellular resource consumption: the handset radio energy consump-

tion E, the signaling overhead S, and the radio resource consumption D. We have defined
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Table 7.6: Findings regarding to the traffic volume impact of redundant transfers.
Question Our finding based on the two datasets §

File cacheability
Most bytes (70% to 78%) and most files (66% to

7.4.1
72%) are cacheable.

Traffic volume impact They account for 18% to 20% of HTTP traffic,
7.4.1

of redundant transfers and 17% of all traffic for the UMICH trace.
Main reason for Problematic caching logic of the handsets

7.4.2
redundant transfers (instead of the sever).

Impact of cache size on
Limited. The detected redundant bytes are at

redundant transfers
least 13% even for a simulated cache of as 7.4.2
small as 4 MB.

Suggested handset
Reducing the cache size from infinity to 50 (100)

cache size
MB causes cache misses for at most 2.0% (1.4%) 7.4.2
of HTTP bytes.

Difference between Very small. Both have similar caching efficiency
persistent cache and due to strong temporal locality of accessing the 7.4.2
non-persistent cache same cache entry.
Caching efficiency of Some popular apps have unacceptably high

7.4.3
individual mobile apps fractions (93% to 100%) of redundant transfers.

these metrics in §2.4 and have described how to compute them in §3.4. We use Carrier

1, whose UMTS network was used by the 20 users contributing the UMICH dataset, to

evaluate the impact. Its RRC state machine is depicted in Figure 2.2.

7.5.1 Computing the Resource Impact

We only studied the UMICH trace, because accurate RRC state reconstruction, a prereq-

uisite for computing the above metrics, requires for each incoming and outgoing packet its

precise timing and size, which is not available in the ISP trace. Also, we only considered

the 3G traffic within the UMICH trace since the resource management policy of Wi-Fi is

much more efficient due to its short-range nature8.

To quantify the resource impact of redundant transfers, we use the methodology de-

scribed in §2.4 by taking the difference of the computed metrics for the original trace and

the modified trace with all redundant transfers removed. Similar analysis is performed

8Wi-Fi has very short tail time and negligible promotion delay[14].
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in §4.4 and §6.4.2 to measure the impact of the inactivity timer and different tail opti-

mization techniques, respectively. Specifically, the radio energy impact is computed as

∆E = (ER − E0)/E0 where E0 and ER correspond to the radio energy consumed by the

original and the redundant-transfer-free trace, respectively. ∆E is negative as removing

redundant transfers reduces energy consumption. The radio resource impact ∆D and the

signaling impact ∆S are computed in similar ways.

Two factors may lead to underestimation of the resource impact. (i) We conserva-

tively consider all HTTPS traffic non-redundant. (ii) In the above approach, by removing

redundant transfers (or any transfers of our interest), we assume that any of the remaining

traffic is unaffected in terms of its schedule and occurrence. This may not be true in real-

ity: if some redundant transfer is eliminated, the subsequent transfer may happen sooner,

or some other traffic may not occur at all (e.g., a DNS lookup). Ignoring such depen-

dency leads to an underestimation of the resource impact because in reality the resultant

redundant-transfer-free trace has shorter duration and/or less traffic than our simulated one.

Although it is difficult to handle all such cases, we do address a common case where a DNS

lookup would not occur if its corresponding HTTP transfer were eliminated. Specifically,

when removing a redundant transfer X , we also try to eliminate a DNS lookup D right

before X , using a time window δ tolerating the handset processing delay. We empirically

choose δ=300 ms but varying it from 100 to 500 ms has negligible impact on the results.

7.5.2 Measurement Results

Table 7.7 measures the resource impact of redundant transfers in two scenarios: (i)

consider only 3G HTTP traffic and exclude 3G non-HTTP traffic, and (ii) consider all 3G

traffic in the UMICH trace. The “∆E (HTC)” and “∆E (Nexus)” columns refer to the radio

energy impact using power parameters of an HTC TyTn II smartphone and a Google Nexus

One smartphone [6], respectively. The presented results also assume an ideal cache. We

found that similar to our findings in §7.4.2, as long as the simulated cache size is reasonably
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Table 7.7: Resource impact of redundant transfers (the UMICH trace), under the scopes of
HTTP traffic and all traffic.

∆S
∆E ∆E

∆D
(HTC) (Nexus)

HTTP only -26.9% -26.1% -25.9% -27.1%
All traffic -6.1% -7.0% -6.7% -9.0%

large (e.g., greater than 10 MB), its impact on the measured resource impact of redundant

transfers is small (results not shown).

As shown in Table 7.7, by considering non-HTTP traffic, the resource impact of redun-

dant transfers decreases sharply from more than 25% to less than 10%, although non-HTTP

traffic accounts for only 13% of the total 3G traffic volume. This is attributed to two reasons

explained below.

First, the resource impact of non-HTTP traffic can be significant although their traffic

volume contribution is small. Due to the tail effect explained in §2.1.3, intermittently trans-

mitting very small amount of data may utilize much more resources than transmitting large

amount of data in one burst [6]. One representative example of such an inefficient traffic

pattern identified in the UMICH trace is Android push notification (identified by TCP port

5228) and XMPP (Extensible Messaging and Presence Protocol, a popular instant messag-

ing protocol using TCP port 5222 [67]) traffic. They account for 1% of the total 3G traffic

volume while their resource impact in terms of E (HTC) is 18%9. On the other hand, for

all HTTP traffic dominating the overall 3G traffic volume (87%), the resource impact in

terms of E (HTC) is only 20%. Note that the traffic patterns of push notifications (and in

general, delay-tolerant transfers) can be optimized to be more resource efficient [14, 68],

resulting in higher resource impact of redundant transfers.

The second reason is resource sharing. Unlike the traffic volume measured in §7.4,

resources in cellular networks can be shared by multiple HTTP sessions, or be shared by

HTTP and non-HTTP transfers. Recall that in §2.1.3, the “radio-on” period of a transfer

9It is computed using the method described in §7.5.1 by taking the difference of the radio energy for the
entire trace and the modified trace where push notification and XMPP transfers are removed.
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consists of a state promotion, its data transmission period and the following tail. If the

radio-on periods of two transfers are fully or partially overlapped, then D and hence E

are shared during the overlapped period. The signaling load S is also shared in that only

one state promotion is triggered by the two transfers. Resource sharing significantly re-

duces the resource impact of redundant transfers, many of which do not incur additional

resource overhead because their channel occupation periods overlap with those of other

transfers. For S, E (HTC), E (Nexus), and D, the fractions of resource reduction due to

resource sharing among redundant transfers and other transfers are 70%, 61%, 63%, and

50%. respectively10.

7.6 Finding the Root Cause

We learn from §7.4.2 that the main reason for redundant transfers is the problematic

caching logic. We verify this by performing comprehensive caching tests for state-of-the-

art HTTP libraries and browsers of Android and iOS.

Previously, professional developers also spent efforts investigating HTTP cache imple-

mentation issues leading to poor performance, focusing on mobile browsers [69, 70, 71,

72, 73]. Our tests go beyond them in two aspects. (i) Our tests are much more complete,

covering all important aspects of caching implementation. To our knowledge, only three

(Test 7, 10, 11) out of the thirteen tests described in §7.6.1 were performed before. (ii) Prior

efforts only investigated browsers but we further examined HTTP libraries that are heavily

used by today’s smartphone applications.

7.6.1 Test Methodology

We examined eight HTTP libraries listed in Table 7.8. To the best of our knowledge,

they cover all publicly available HTTP libraries for Android and iOS. To test them, we

10It is computed as 1 − (U(T ) − U(T2))/U(T1) where U(·) computes the resource consumption for
a certain trace. Trace T is the original trace of all traffic. T1 consists of only redundant transfers. T2
corresponds to T with T1 removed.
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Table 7.8: Our tested HTTP libraries and smartphone browsers.
Name HTTP library or browser Platform Handset∗

UC java.net.URLConnection Android 2.3 GS
HUC java.net.HttpURLConnection Android 2.3 GS
HC org.apache.http.client.HttpClient Android 2.3 GS
WV android.webkit.WebView Android 2.3 GS
HRC android.net.http.HttpResponseCache Android 4.0.2 GN
T20 Three20 (Version 1.0.6.2) iOS 4.3.4 iP4

NSUR NSURLRequest iOS 5.0.1 iP4S
ASIHR ASIHTTPRequest (Version 1.8.1) iOS 4.3.4 iP4

AB The Android web browser Android 2.3 GS

SB The Safari web browser on iPhone
iOS 4.3.4 iP4
iOS 5.0.1 iP4S

∗ Handset: GS = Samsung Galaxy S, GN = Samsung Galaxy Nexus,
iP4 = iPhone 4, iP4S = iPhone 4S.

wrote small applications using these libraries as HTTP clients. We also investigated the

default browsers on Android and iPhone, using strategically generated HTML pages em-

bedding multiple web objects to perform tests involving multiple files (for Test 11 and 12).

We performed all tests on real handset devices: Samsung Galaxy S with Android 2.3,

Samsung Galaxy Nexus with Android 4.0.2, iPhone 4 with iOS 4.3.4, and iPhone 4S with

iOS 5.0.1. Each handset has non-volatile storage of at least 10 GB. In each test, a client only

requested files, whose caching directives were properly configured, from our controlled

HTTP server running Apache 2.2. We ran tcpdump on the server to monitor incoming

HTTP requests to tell whether a request we made was served by the handset cache or by

the server.

We took the following measures to further eliminate external factors that may affect the

accuracy. (i) Before launching each test, the handset cache (if existed) was always cleared

either manually (for browsers) or by calling the corresponding APIs (for libraries). (ii)

We verified that the caching behaviors of the server in all tests were correct by analyzing

the traces collected at the server11. The clocks of both the server and the handset were
11The server was also tested by http://redbot.org, an online tool for checking HTTP caching im-

plementation of web servers.
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synchronized as well. (iii) We also ran tcpdump on the handset and compared HTTP

requests and responses observed at the handset and at the server. We found both to be

identical in all tests, implying that the cellular middleboxes did not change any caching

directives. This is further confirmed by the fact that using cellular and Wi-Fi yielded the

same testing results.

We designed 13 black-box tests to understand how caching was implemented in the

state-of-the-art HTTP libraries and mobile browsers. Test 1 to Test 7 verify whether key

features (e.g., revalidation) were supported. Failure to support any of them may lead to re-

dundant transfers. Test 8 to Test 13 determine important attributes of a cache (e.g., its size)

whose implications on redundant transfers cannot be overlooked either. Note the testing

methodology is generally applicable to HTTP libraries and browsers on any platform. We

detail the tests below.

Test 1 (Basic caching). The handset requests for a small cacheable file f . The server

transfers f with a proper Expires directive. Then the client requests for f again before it

expires. If the basic caching is supported, the second request should not incur any network

traffic.

Test 2 (Revalidation). It is similar to Test 1 except that the client requests for f after it

expires. For the second request, the client should issue a conditional request with an

If-Modified-Since directive. Then the server will respond with an HTTP 304 indi-

cating the file has not changed.

Test 3 (Non-caching directives). It tests whether the following directives are correctly fol-

lowed: Cache-Control:no-store, Pragma:no-cache, and Cache-Control:no-cache.

Their caching logic is described in §7.2.

Test 4 (Expiration directives). It is similar to Test 1 except that the server uses other ex-

piration directives: (i) Cache-control:max-age, (ii) Expires and max-age, and (iii)
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max-age and age. In (ii), max-age should override Expires. In (iii), the file should

always expire if age is greater than max-age.

Test 5 (URL with query string). It is similar to Test 1 except that the URL contains a query

string (e.g., query.php?p=123).

Test 6 (Partial caching). The handset performs a byte-range request [p1, q1] for a small

cacheable file f . The server transfers the corresponding range of f with a proper Expires

directive and an eTag. Before the response expires, the client performs another byte-range

request [p2, q2] for f . If p2 ≥ p1 and q2 ≤ q1, then we should not observe the second request

over the network.

Test 7 (Redirection). We test whether a handset caches two types of responses: 301

Moved Permanently and 302 Found. They are common ways of performing a per-

manent and a temporary redirection, respectively. A 301 response is always cacheable

unless indicated otherwise (e.g., by Cache-Control:no-store). A 302 response is only

cacheable if indicated by a Cache-Control or Expires header field. The testing pro-

cedure is similar to Test 1 except that the response of the server is HTTP 301 or 302,

redirecting the request to another small file.

Test 8 (Shared or non-shared cache). We run two applications A and B using the same

library to be tested on the same phone. A requests for a small cacheable file f . Then B

requests for f again before f expires. If the cache is shared by both applications, the second

request should not incur any network traffic. Otherwise we will see two requests over the

network. We did not find any publicly available API that allows one to read or modify

cache entries of the default Android or iPhone browser, whose caches are thus assumed to

be non-shared.

Test 9 (Persistent or non-persistent cache). We perform a test similar to Test 1 except that

we reboot the phone after receiving the first response. A persistent cache must survive a

device reboot (and therefore a process restart).
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Test 10 (Cache entry size limit). A large file may not be cached by a given cache imple-

mentation with a cache entry size limit. We perform binary search for this limit by fetching

cacheable files of varying sizes from the server. For a file of size si, we perform Test 1 after

clearing the cache to see whether si is above the cache entry size limit. Previous measure-

ment [71] reported that HTML pages and external web objects (e.g., JavaScript and CSS)

may have different cache entry size limits, which are measured separately by us.

Test 11 (Total cache size). We perform binary search for the total cache size. To test

whether it exceeds a particular value z, we clear the cache and download n cacheable

files f1, ..., fn each with a size of z/n (smaller than the cache entry size limit inferred by

Test 10). We then request for the n files again. z exceeds the total cache size if and only if

any file is transferred over the network in the second pass.

Test 12 (Replacement policy). We test for five cache replacement algorithms known to be

commonly implemented [74]: (i) LRU (Least Recently Used), (ii) LFU (Least Frequently

Used), (iii) evicting the oldest cache entry, (iv) evicting the cache entry with the nearest

expiration time, and (v) evicting the cache entry of the largest size.

To test whether the replacement policy is LRU, we first fill up the cache using n

cacheable files f1, ..., fn such that
∑n

i=1 fi < z where z is the total cache size inferred

by Test 11. Next, we randomly generate an n-permutation p1, p2,..., pn, and then re-

quest for fp1 , ..., fpn again. Subsequently the handset downloads a new file fn+1 such

that
∑n+1

i=1 fi > z, thus triggering a cache entry eviction. If fp1 is evicted (based on Test 1),

then we know LRU is the replacement policy since fp1 is the least recently accessed file.

Other replacement algorithms are tested in similar ways.

Test 13 (Heuristic freshness lifetime). The HTTP server is configured in a way that it puts

neither Cache-Control:max-age nor Expires in a response. Then we test whether a

small file can be cached by performing Test 1 in which the two requests are sent back to

back. If it can, we do binary search for the heuristic freshness lifetime (§7.3.3.1) by varying

the interval between the two requests.
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7.6.2 Test Results

Table 7.9 and Table 7.10 summarize the results (refer to Table 7.8 for acronyms of the

libraries and browsers). Each feature in Test 1 to Test 7 can be fully supported (indicated

by a “ ” symbol), not supported at all (“#”) or partially supported (“H#” with the reason

explained). For each of the attribute tests (Test 8 to Test 13), a “5” symbol means the

test was not performed since the corresponding API does not support HTTP caching. We

highlight key findings as follows.

• To our surprise, among the eight HTTP libraries, four (three for Android and one for

iOS) do not support caching at all. Smartphone apps using these libraries thus cannot

gain any benefit from caching. It is most likely that the library developers skip imple-

menting the caching feature for simplicity. In fact, for java.net.HttpURLConnection

and org.apache.http.client.HttpClient, they leave the implementation of

the caching logic to library users by providing caching interfaces through several ab-

stract classes. Other (less likely) concerns of using caching relate to its memory and

storage overhead. We however show in §7.4.2 that the cache size does not need to be

very large: reducing the cache size from infinity to 50 (100) MB causes cache misses

for at most 2.0% (1.4%) of HTTP bytes. Another issue of a persistent cache is its

performance. A recent study [75] has shown that the random write performance of

flash storage (the persistent storage used by most handsets today) can be extremely

low (0.02MB/s or even less), affecting caches that frequently perform synchronous

random writes. For example, WebView on Android writes metadata into a SQLite

database using synchronous random writes. The cache performance can be signifi-

cantly improved by putting the cache in the RAM.

• For libraries and browsers that do support caching, they may not strictly follow RFC

2616, as detailed by footnotes d, h, j, k in Table 7.9 and Table 7.10. To our knowl-

edge, only observations h and j were reported by previous measurements [73, 72]
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Table 7.9: Testing results for smartphone HTTP libraries and browsers (Part 1).  : fully
supported #: not supported H#: partially supported 5: not applicable. Refer to Table 7.8
for acronyms of the libraries and browsers.

Test Name UC HUC HC WV HRC
1. Basic caching # #b #a   
2. Revalidation # # #   
3. Non-caching

# # #   
directives
4. Expiration

# # #   
directives
5. URL with

# # #   
query string
6. Partial caching # # # # #
7. Redirection # # # # #
8. Shared or

5 5 5 Non-shared Non-shared
non-shared cache
9. Persistent or non-

5 5 5 Persistent Persistent
persistent cache
10. Cache entry

5 5 5 2 MB No limit
size limit

11. Total cache size 5 5 5
Storage Specified by

Capacity Developersc

12. Replacement
5 5 5 LRU LRU

policy
13. Heuristic

5 5 5 17.5 hrs 30 mins
fresh lifetime
a Including subclasses AbstractHttpClient, AndroidHttpClient,

and DefaultHttpClient. None supports basic caching.
b The class provides caching interfaces through the abstract classes
ResponseCache, CacheRequest, and CacheResponse.
But developers need to implement them by themselves.

c The cache size must be specified by developers.
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Table 7.10: Testing results for smartphone HTTP libraries and browsers (Part 2).
Test Name T20 NSUR ASIHR AB SB

1. Basic caching # H#j  H#j H#j

2. Revalidation #     
3. Non-caching

#  H#d   
directives
4. Expiration

#     
directives
5. URL with

#     
query string
6. Partial caching # # # # #
7. Redirection # H#h # H#h H#h

8. Shared or
5 Shared

Shared
Non-shared Non-shared

non-shared cache by defaulte

9. Persistent or non-
5 Hybridl Persistent Persistent Persistent

persistent cache
10. Cache entry

5
NP: 50 KB No limit / 2 MB / 250 KBg /

size limit P: 2 MBl 512 KBi 4 MBi 4 MBi

11. Total cache size 5
NP: 1 MB Storage

8 MB 100 MB
P: 40 MBf Capacity

12. Replacement
5 LRU LRU LRU LRU

policy
13. Heuristic

5 48 hrs 0k 48 hrs 48 hrs
fresh lifetime
d The class does not cache responses with Pragma:no-cache or
Cache-Control:no-cache.

e Developers can make it non-shared by specifying a private cache storage path.
f The default sizes are 1 MB for the non-persistent cache and 40 MB for the

persistent cache. But they are also configurable by developers.
g Safari on iOS 5 has a larger cache entry size limit of 2 MB for an HTML page.
h They do not cache a cacheable HTTP 302 response.
i The first and the second numbers are the cache entry size limits for an HTML

page and an external web object (e.g., JavaScript), respectively.
j When loading the same URL back-to-back, the second load is treated as a

reload without using a cached copy or issuing a conditional request.
k Revalidation is always performed when neither Cache-Control:max-age

nor Expires exists in a response.
l Both a persistent and a non-persistent cache are used. Given a file whose size

is s, it is stored in the non-persistent cache if s <50KB, or stored in the
persistent cache if 50KB≤ s <2 MB, or not stored if s ≥ 2MB.
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(for browsers only). All such cases of non-compliance potentially incur redundant

transfers.

• The Android browser uses a small cache of 8 MB. As described in §7.4.2, increasing

the cache size brings non-trivial reduction of cache misses.

• No library or browser supports partial caching, although its impact on redundant

transfers is limited (§7.4.1).

• We found that for all libraries that support caching, in order to leverage the caching

support, a developer still needs to configure the library. However, developers can

easily skip that for simplicity, or they can simply be unaware of it, therefore missing

the opportunity of caching and incurring redundant transfers.

By exposing the shortcomings of existing implementations, our work helps encourage

library and platform developers to improve the state of the art, and helps application devel-

opers choose the right libraries for better performance.

7.7 Discussion and Conclusion

Web caching in mobile networks is critical due to the unprecedented cellular traffic

growth that far exceeds the deployment of cellular infrastructures. Caching on handsets is

particularly important as it eliminates all network-related overheads. We have performed

the first network-wide study of the redundant transfers caused by inefficient web caching on

handsets. We found that redundant transfers account for 17% and 20% of the HTTP traffic,

for the two large datasets, respectively. Further analysis on the UMICH trace suggests that

redundant transfers are responsible for 17% of the bytes, 6% of the signaling load, 7%

of the radio energy consumption, and 9% of the radio resource utilization of all cellular

data traffic. Most of the redundancy can be eliminated by making the caching logic fully
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support and strictly follow the protocol specification, and making developers fully utilize

the caching support provided by the HTTP libraries.

For further optimizing web caching for mobile networks, we discuss three potential

directions which are not explored in this Chapter.

The offline application cache is a new feature in HTML5, the latest version of the

HTML standard [76]. It differs from HTTP caching in two ways. (i) Caching information

of all objects embedded in an HTML page is specified in a small cache manifest file associ-

ated with the HTML page. (ii) There is no explicit expiration, which is instead indicated by

a new version of the manifest file that is always downloaded whenever the HTML page is

fetched over the network. Although the usage of HTML5 caching is very unpopular in our

datasets (only one app in the UMICH trace used it), analysts envision it will eventually be

widely used as almost all smartphones are expected to support HTML5 by 2013 [77]. We

expect strategically employing this coarse-grained caching mechanism with the traditional

per-file-based HTTP caching can achieve more reduction of revalidation traffic causing

non-trivial resource consumption despite their small sizes [78].

Optimizing caching parameter settings based on the file semantics is not addressed

in this chapter, as described in §7.3.1. However we do observe from our datasets exam-

ples where caching parameter settings are obviously too conservative. For example, in the

UMICH trace, for the built-in weather app of Motorola Atrix, 95% of its bytes are marked

by server as non-storable. We plan to conduct a more in-depth investigation on optimizing

caching parameter configurations.

Previous caching proposals such as delta encoding [61] and piggyback cache vali-

dation [59] may provide additional benefits in cellular networks. For example, batching

multiple validation requests into a single message [59] potentially reduces the resource

overhead as otherwise each individual validation request may incur a separate tail. We plan

to revisit both studies in our future work.
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CHAPTER VIII

Related Work

8.1 RRC state machine: Inference, Measurement, and Optimization

Inference. Accurate inference of the RRC state machine is the first necessary step to-

wards characterizing and improving the resource management policy in cellular networks.

Previous work [79, 25] introduced 3G Transition Triggering Tool to infer RRC state ma-

chine parameters and to measure one-way delays in different RRC states. But their ap-

proach is based on a fixed state transition model and only infers the corresponding param-

eters (e.g., inactivity timers). Beyond their work, in §3.1, we also considered and inferred

different state transition models configured by two commercial UMTS carriers.

Measurement. To the best of our knowledge, our work described in Chapter IV is

the first comprehensive study that characterizes the RRC state machine and and investi-

gate the optimality of state machine configurations using realistic traffic patterns. The key

difference between our work and previous measurement studies of cellular networks (e.g.,

3gTest [45], LiveLab [41], and a study of the diversity of smartphone usage [42]) is that,

previous ones focus on characterization at only IP and higher layers while ours puts special

emphasis on the radio resource control layer and its interaction with the upper layers.

Optimization. The problem of choosing the optimal inactivity timer values has also

been studied in several previous work. Among them, Chuah et al. [80] studied the im-

pact of inactivity timers on UMTS network capacity by simulating the performance of web
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browsing. Some [19, 20] proposed analytical models to measure the energy consumption

of user devices under different timer values. Previous studies [21, 22] also discussed the

influence of different timeout values on both service quality and energy consumption. In

addition, several other projects also studied network resource management [81, 82]. How-

ever, all this prior work was evaluated based on simulation using particular traffic models.

In fact, real traffic patterns depend highly on user behavior among other factors and are not

easily captured using analytic models. We therefore use real traffic traces for evaluation to

ensure the applicability of our work to real network settings.

Researchers also proposed ideas on setting timeout values dynamically. In [83] time-

outs for the inactivity timers are decided dynamically for radio resources and computation

resources. However, they only addressed the problem from the perspective of network ca-

pacity as to reducing the call blocking and dropping rate. In their scenario, the same timer

values are applied globally to all handsets at any given time. The fast dormancy scheme

described in §2.5 and §4.5.2 is essentially setting the timer dynamically. Its goal is to save

radio resources and handset’s energy. Therefore the dynamic timer (i.e., the invocation of

fast dormancy) is customized for each handset. Using fast dormancy as the building block,

in Chapter VI, we propose Tail Optimization Protocol (TOP), an application-layer protocol

that bridges the gap between the application and the fast dormancy support provided by

the network. Some of the key challenges we address include the required changes to the

OS, applications, and the implication of multiple concurrent connections using fast dor-

mancy. In particular, TOP addresses three key issues associated with allowing smartphone

applications to benefit from this support.

8.2 Profiling and Optimizing Mobile Applications

In Chapter §IV, we systematically characterize the impact of the RRC state machine on

radio resources and energy by analyzing traces collected from a commercial UMTS net-

work. As mentioned in §8.1, similar measurements have been done by previous studies
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such as [20] and [21], using analytical models. Recent work [39] also investigates impact

of traffic patterns on radio power management policy and proposes suggestions such as

reducing the tail time to save handset energy. These studies did examine the interplay be-

tween smartphone applications and the state machine behavior, while our work described

in Chapter §V makes a significant further step by introducing a novel tool, the mobile Ap-

plication Resource Optimizer (ARO) that systematically correlates information at multiple

layers to reveal the low efficiency of resource utilization to application developers.

Many work propose techniques to optimize smartphone application performance and

energy efficiency by strategically scheduling applications’ data transfers or changing ap-

plications’ traffic patterns. Prior work [14] introduced TailEnder, which delays transfers of

delay-tolerant traffic and transfers them with normal traffic, so that the overall tail time in-

curred by delay-tolerant traffic could be reduced. Also prefetching could be used to reduce

tail time. Similar scheduling strategies for cellular networks are presented in [36], which

delays transfers to offload data transfers from 3G to WiFi, when delaying reduces 3G usage

and the transfers can be completed within the application’s tolerance threshold. Given that

cellular radios consume more power and suffer reduced data rate when the signal is weak,

the Bartendr system [28] allows applications to preferentially communicate when the sig-

nal is strong, either by deferring non-urgent communication or by advancing anticipated

communication to coincide with periods of strong signal, in order to reduce the energy

consumption. Other cellular data scheduling approaches include piggyback [68], batch-

ing [68], Time Alignment [84], and Intentional Networking [85]. In contrast, our ARO tool

provides application developers with more opportunities to optimize short bursts, whose

resource impact is particularly high due to the tail effect (§2.1.3), that can be triggered by

multiple factors.

The ARO tool provides a surprising observation (§5.5.2.1) that periodic transfers, where

a handset periodically exchanges small amount of data with a remote server, can be very

resource-inefficient in cellular networks, we recently performed the first network-wide,
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large-scale investigation of cellular periodic transfers [68]. Using a large packet trace col-

lected from a commercial cellular carrier, we found that periodic transfers are very preva-

lent in today’s smartphone traffic. However, they are extremely resource-inefficient for

both the network and end-user devices even though they predominantly generate very lit-

tle traffic. This is a direct consequence of the tail effect (§2.1.3) in cellular networks.

For example, for Facebook, periodic transfers account for only 1.7% of the overall traffic

volume but contribute to 30% of the total handset radio energy consumption. We found

periodic transfers are generated for various reasons such as keep-alive, polling, and user

behavior measurements. We further investigate the potential of various traffic shaping and

resource control algorithms, including piggyback, batching, TailEnder [14], and fast dor-

mancy (§2.5). Depending on their traffic patterns, applications exhibit disparate responses

to optimization strategies. Jointly using several strategies with moderate aggressiveness

can eliminate almost all energy impact of periodic transfers for popular applications such

as Facebook and Pandora.

Complementary to our ARO tool are profiling tools that focus on power modeling. For

example, PowerTutor [18] is an online power estimation tool to determine system-level

power consumption for smartphone devices. Based on the deployed inactivity timers in

current commercial networks, studies [86, 87, 88] carried out measurement studies to ex-

amine the energy consumption and network performance on smartphones. Prior work [89]

attempted to optimize network performance and increase energy efficiency by proposing a

self-tuning power management (STPM) that adapts its behavior to the access patterns and

intent of applications, the characteristics of the network interface, and the energy usage of

the platform, for Wi-Fi networks. The Cool-Tether architecture [90] harnesses the cellu-

lar radio links of one or more mobile smartphones in the vicinity, builds a Wi-Fi hotspot

on-the-fly, and provides energy-efficient, affordable connectivity.
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8.3 Caching and Redundancy Elimination

To the best of our knowledge, our study described in Chapter VII is the first compre-

hensive investigation of HTTP cache implementation on mobile devices. We describe its

related work in four categories below.

Extensive research on web caching has been done since the World Wide Web was in

its nascent state. We summarize the important topics. (i) Web server workload modeling

and characterization, focusing on the implication on caching [91, 62]. (ii) Efficient cache

replacement algorithms [58, 74]. (iii) Efficient cache validation and invalidation techniques

for strong consistency [59, 60]. Note a validation is initiated by a client which verifies the

validity of its cached files (as used in HTTP), while an invalidation is performed by the

origin server which notifies clients which of its cached files have been modified. (iv) Coop-

erative proxy caching [57, 63] where individual proxies share their cached files with each

other’s clients. (v) Caching-friendly content representation such as delta encoding [61].

Caching in mobile networks. Recent study [1] explored the potential benefits of HTTP

caching in 3G cellular networks by analyzing traffic traces collected from a large 3G cellu-

lar carrier. They found that the cache hit ratio is 33% when caching at the Internet gateway.

Another study [64] investigated the potential for caching video content in cellular networks,

indicating that 24% of the bytes for progressive video download can be served from a net-

work cache located at the Internet gateway. By comparison, our study investigates caching

efficiencies from the perspective of individual handsets.

Another recent study [78] examined three client-only solutions: caching, prefetching,

and speculative loading, using web usage data collected from 24 iPhone users over one

year. The authors focus on improving the smartphone browsing speed instead of saving

the bandwidth. They found that 40% of resource requests can be served by a local browser

cache of 6 MB, implying the necessity of HTTP caching. However, its effectiveness of re-

ducing the latency is found to be not as good as that of reducing the traffic volume, mainly

because revalidation cannot hide network RTT, which is an important factor affecting mo-
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bile browser performance.

HTTP cache implementation on browsers. Professional developers spent efforts in-

vestigating HTTP cache implementation issues leading to poor performance, focusing on

mobile browsers. The following measurement studies were reported on various technical

blogs. Early measurement [69] in 2008 shows that the iPhone 3G browser has a non-

persistent cache with an entry size limit of 25 KB (for HTML files) and a total size of

500 KB, implying potential performance issue for large web pages. The experiments were

revisited in 2010 [70], and larger cache sizes of iOS 4 on iPhone 4 and Android 2.1 were

observed. Similar tests of caching sizes were performed in [66]. Blog entry [71] further

pinpoints that for iPhone and Android browsers, the cache entry size limit differs depending

on the file type (we considered this in our tests). Blog entry [72] revealed an implemen-

tation bug of Safari on iOS 4 shown in footnote j in Table 7.10. We confirmed this and

found this problem also exists in the Android 2.3 browser and the NSURLRequest library.

Blog entry [73] discovered that most desktop and mobile browsers do not cache HTTP

redirections properly. Our caching tests cover all aforementioned aspects, and are much

more complete as described at the beginning of §7.6.

Data compression. Besides caching, another orthogonal approach for redundancy

elimination is data compression, which can be performed at each single object (e.g., gzip [92]),

across multiple objects (e.g., shared dictionary compression over HTTP [93]), or for packet

streams (e.g., MODP [94]). Compression can be jointly applied with caching to further

save the network bandwidth.
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CHAPTER IX

Conclusion and Future Work

My dissertation is dedicated to address two major challenges associated with cellu-

lar carriers and their customers: carriers operate under severe resource constraints, while

mobile applications often utilize radio channels and consume handset energy inefficiently.

From carriers’ perspective, we performed the first measurement study to understand the

state-of-the-art of resource utilization for a commercial cellular network, and revealed that

fundamental limitation of the current resource management policy is treating all traffic ac-

cording to the same resource management policy globally configured for all users. From

mobile applications’ perspective, we developed a novel data analysis framework called

ARO (mobile Application Resource Optimizer), the first tool that exposes the interaction

between mobile applications and the radio resource management policy, to reveal ineffi-

cient resource usage due to a lack of transparency in the lower-layer protocol behavior.

ARO revealed that many popular applications built by professional developers have sig-

nificant resource utilization inefficiencies that are previously unknown. Motivated by the

observations from both sides, we proposed a novel resource management framework that

enables cooperation between handsets and the network to allow adaptive resource release,

therefore better balancing the key tradeoffs in cellular networks. We also investigated the

problem of reducing the bandwidth consumption in cellular networks by performing the

first network-wide study of HTTP caching on smartphones due to its popularity. Our find-
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ings suggest that for web caching, there exists a huge gap between the protocol specification

and the protocol implementation on today’s mobile devices, leading to significant amount

of redundant network traffic. In summary, my dissertation indicates the importance of all

of the following:

• Understanding the underlying radio resource control mechanism;

• Properly handling the interaction between mobile applications and lower layer be-

havior;

• Leveraging the knowledge of handsets to facilitate resource management;

• Ensuring the consistency between protocol specification and implementation.

In my opinion, it is good to adhere to the following general principles in the course of

system and networking research.

• The measurement observations are representative. We collaborated with a com-

mercial cellular ISP in the U.S., and collected cellular data of hundreds of thousands

users from its cellular core network, to ensure the representativeness of our observa-

tions drawn from the data.

• The solution is general in that it attacks the fundamental limitations of cellular net-

works. My proposed methodologies are directly applicable to any type of cellular

networks including 2G GPRS/EDGE, 3G UMTS/HSPA, and 4G LTE networks that

employ similar core resource management policies.

• The solution is practically deployable. The ARO [6] and TOP [7] systems do

not require any change to the cellular infrastructure. In particular, our ARO proto-

type [51] has been productized by AT&T and is now available to developers [52].

For resource inefficiencies found in popular smartphone applications such as Pan-

dora and Facebook [6, 4], we have contacted the corresponding developers, and the

responses were encouragingly positive [95].
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• The underlying concept has even longer-term impact. My proposed frameworks

of cross-layer analysis [6] and cooperative resource management [7] provide insight-

ful guidelines for analyzing and optimizing general wireless network systems.

9.1 Future Work

In the course of my research, I have noticed that understanding the underlying radio

resource control mechanism and its implications helps balance the key tradeoffs in cel-

lular data networks and improve the resource efficiency for mobile applications. In the

near future, I am interested in further leveraging this guideline to make wireless systems

more resource efficient, as well as identifying the new challenges of cellular network and

smartphone applications.

The network: from 3G to 4G. Currently 3G (UMTS, EvDO, and HSPA) is the main-

stream cellular access technology. In 2009, 4G LTE (Long Term Evolution) started entering

the commercial markets and is available now in more than 10 countries with a fast-growing

user base. Besides the higher bit rate and lower latency that significantly outperform those

of 3G, LTE employs a more complex RRC state machine with DRX (Discontinuous Re-

ception where the handset periodically wakes up to check paging messages and sleeps for

the remaining time) enabled even when a handset is occupying the high-speed transmission

channel, in order to save the energy. We have done preliminary analysis on understanding

the RRC policy, the power model, and the impact of DRX on application performance in

4G LTE networks [11]. A more in-depth exploration is an important part of my future

work.

The apps: from individuals to the full spectrum. Given the extreme popularity of

smartphone applications, a critical missing piece of information needed by carriers is their

efficiencies of resource usage (radio resource utilization, signaling load, and handset energy

consumption), which may have little correlation with their bandwidth consumption. Based

on my experience of developing ARO, I plan to build a real-time monitoring system that
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can be leveraged by cellular carriers, which already have infrastructures to capture packet

data in their core networks, to monitor resource efficiencies for a wide range of applications

used by millions of customers. For those resource-inefficient applications detected by the

system, the carrier can contact their developers for improvement.

We face three challenges towards building such a monitoring system. First, unlike ARO

that can obtain various types of data directly from handsets, the only type of data available

to the monitoring system is the network packet traces, whose payload needs to be carefully

mined to extract useful information. Second, since the data collection is completely pas-

sive, multiple applications can be simultaneously running on a handset. However, the RRC

state transitions are determined by the aggregated traffic of all applications. Therefore we

need to separate the resource impact of each of the concurrent applications running on a

handset. Third, as a real-time monitoring system, it should be well scalable with small

computation and storage overhead.

The optimization techniques: from uniform to diverse. Besides handset-based HTTP

caching, I plan to pursue other directions for reducing the amount of data transferred in

cellular networks, such as efficient compression, delta encoding [61], and the offline appli-

cation cache provided by HTML5, which is expected to be supported by almost all smart-

phones by 2013 [77]. There remain three main challenges: (i) how to select the most

effective technique for a particular content type or content provider, (ii) how to handle the

complex interplay among multiple techniques when they are used together (if this brings

additional benefits), and (iii) how to make the entire mechanism as transparent as possible

from the application developers’ perspective.
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